Journée nationale de la vérité et de la réconciliation

UDEMNOUVELLES | LE 27 SEPTEMBRE 2021 | CHRISTINE FORTIER

L'éducation à la réconciliation

Journée nationale de la vérité et de la réconciliation

Superconductivity in ultra-quantum matter: Part I

A.-M.S. Tremblay

RQMP 30 September 2021 10:30

USHERBROOKE.CA/IQ 4

Atomic structure

• Who ordered this?

Vishik, Rep. Prog. Phys. (2018)

7

Band structure for high Tc

"Universal" phase diagram

Public Domain, https://en.wikipedia.org/w/index.php?curid=21641300

Mott Insulator : X-Ray absorption

Meinders et al. PRB 48, 3916 (1993)

Mott Insulator : X-Ray absorption

Meinders et al. PRB 48, 3916 (1993)

Take home messages

- Most of the main features of the phase diagram follow from the Hubbard model.
- This physics is continuously connected to the Mott transition at halffilling
- We need to look beyond traditional tools of solid state physics to work this out.

Minuterie

• 10 Minutes

Outline

- Method
- One-band Hubbard model
 - Phase diagram
 - Pseudogap
 - d-wave superconductivity
 - A phase transition at the heart of the phase diagram
- Three-band Hubbard model : oxygen can probe the details
 - Pseudogap
 - d-wave superconductivity

Method : The precursors

Hohenberg-Kohn : Exchange correlation Kohn-Sham : Basis set Density Functional Theory

SHERBROOKE

Method

Metzner, Vollhardt PRL **62**, 324 (1989) Georges, Kotliar, PRB **45**, 6479 (1992) Jarrell PRL **69**, 168 (1992) Review: Georges, Kotliar, Krauth, Rozenberg, RMP **68**, 13 (1996)

Dynamical Mean-Field Theory : DMFT

For additionnal physical intuition: Compare with more analytical approaches

- Pseudogap
 - Wei Wu, Scheurer, Chatterjee, Sachdev, Georges, Ferrero PRX 8, 021048 (2018)
 - Scheurer, Chatterjee, Wu, Ferrero, Georges, Sachdev, PNAS 115, E3665 (2018).

Localized and delocalized pictures

Localized

Lichtenstein *et al.*,PRB 2000 Kotliar *et al.*, PRB 2000 M. Potthoff, EJP 2003

REVIEWS Maier, Jarrell et al., RMP. (2005) Kotliar *et al.* RMP (2006) AMST *et al.* LTP (2006)

$$(G^{-1})_{ij} = (G_0^{-1})_{ij} - \Sigma_{ij}$$

$$(G^{-1})_{ij} = (G_0^{-1})_{ij} - \Sigma_{ij}$$

Localized and delocalized pictures

$$G_{ij}(\tilde{k}) = \left(\frac{1}{(i\omega_n + \mu)I - \varepsilon(\tilde{k}) - \Sigma}\right)_{ij}$$

21

$$G_{ij}(\tilde{k}) = \left(\frac{1}{(i\omega_n + \mu)I - \varepsilon(\tilde{k}) - \Sigma}\right)_{ij} \longrightarrow G_{ij} = \int \frac{d^d \tilde{k}}{(2\pi)^d} G_{ij}(\tilde{k})$$

Localized and delocalized pictures C-DMFT

$$G_{ij} = \int \frac{d^d \tilde{k}}{(2\pi)^d} \left(\frac{1}{(i\omega_n + \mu)I - \varepsilon(\tilde{k}) - \Sigma} \right)_{ij}$$

$$(G^{-1})_{ij} = (G_0^{-1})_{ij} - \Sigma_{ij}$$

Dynamical cluster approximation (DCA)

Hettler ...Jarrell...Krishnamurty PRB 58 (1998)

Impurity solvers

USHERBROOKE.CA/IQ 25

Impurity solver (Exact diagonalisation)

Caffarel, Krauth, PRL 72 1545 (1994)

QCM David Sénéchal

Impurity solver : continuous-time quantum Monte Carlo

$$Z = \int \mathcal{D}[\psi^{\dagger}, \psi] \,\mathrm{e}^{-S_{c} - \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{\mathbf{K}} \psi_{\mathbf{K}}^{\dagger}(\tau) \Delta(\tau, \tau') \psi_{\mathbf{K}}(\tau')}_{\mathbf{K}}$$

Hybridization expansion :

Werner Millis PRB 74, 155107 (2006) Werner Millis B 75, 085108 (2007) Haule, PRB 75, 155113 (2007) Sémon, Sordi, AMST PRB 89, 165113 (2014) Sémon, Yee, Haule, AMST PRB 90, 075149 (2014)

LPSCoreCT-HYBiQISTComCTQMC

27

Impurity solver : continuous-time quantum Monte Carlo

$$S = \int_0^\beta \mathrm{d}\tau \mathrm{d}\tau' \sum_{\sigma=\uparrow,\downarrow} \xi^*_{\sigma}(\tau) \left[g^{-1}_{0\sigma}(\tau - \tau') \right] \xi_{\sigma}(\tau') + U \int_0^\beta \mathrm{d}\tau \left(n_{\uparrow}(\tau) n_{\downarrow}(\tau) - \frac{n_{\uparrow}(\tau) + n_{\downarrow}(\tau)}{2} \right)$$

CT-AUX : Gull, Werner, Parcollet, Troyer, 2008, Europhys. Lett. 82, 57003 (2008) DCA++

Review of these methods

Gull, Millis, Lichtenstein, Rubtsov, Troyer, Werner RMP 83, 349 (2011)

Some groups using these methods for cuprates

- Europe:
 - Georges, Parcollet, Ferrero, Civelli, Wu (Paris)
 - Lichtenstein, Potthoff, (Hamburg) Aichhorn (Graz),
 Liebsch (Jülich) de Medici (Grenoble) Capone (Italy)
- USA:
 - Gull (Michigan) Millis (Columbia)
 - Kotliar, Haule (Rutgers)
 - Jarrell (Louisiana)
 - Maier, Okamoto (Oakridge)
- Japan
 - Imada (Tokyo) Sakai, Tsunetsugu, Motome

Critique

USHERBROOKE.CA/IQ 30

+ and -

- Long range order:
 - No mean-field factorization on the cluster
 - Symmetry breaking allowed in the bath
- Included exactly:
 - Short-range dynamical and spatial correlations
- Missing:
 - Long wavelength p-h and p-p fluctuations
 - Hence good when the corresponding correlation lengths are small

Possible artefacts

Verret, Roy, Foley, Charlebois, Sénéchal, A.-M.S.T, RPB 100, 224520 (2019)

STM Kohsaka, ... Davis, Nature (London) 454, 1072 (2008).

32

What to do

- Exact in the infinite size limit of the cluster
 - Compare different cluster sizes
 - Compare real-space (CDMFT) and momentum space (DCA) clusters

Minuterie

- 10 Minutes
- 6 minutes = 16 minutes

Back to our problem: Phase diagram

USHERBROOKE.CA/IQ 35

Vishik, Rep. Prog. Phys. (2018)

Vishik, Rep. Prog. Phys. (2018)

A bird's eye overview of the T = 0 phase diagram

$$U = 8t, t' = -0.3t, t'' = 0.2t$$

A. Foley *et al.* Phys. Rev. B **99**, 184510 (2019)
S. S. Kancharla, *et al.* Phys. Rev. B **77**, 184516 (2008)
D. Sénéchal, *et al.* Phys. Rev. Lett. **94**, (2005)
M. Jarrell *et al.* EPL **56** 563, (2001)

A. Foley

S. Verret D. Sénéchal

CDMFT 4 sites

Competing ground states

PHYSICAL REVIEW X 10, 031016 (2020)

Absence of Superconductivity in the Pure Two-Dimensional Hubbard Model

Mingpu Qin^(b),^{1,2,*} Chia-Min Chung^(b),^{3,4,*} Hao Shi,⁵ Ettore Vitali,^{6,2} Claudius Hubig^(b),⁷ Ulrich Schollwöck^(b),^{3,4} Steven R. White^(b),⁸ and Shiwei Zhang^(b),^{5,2}

PRL 113. 046402 (2014)	PHYSICAL	REVIEW	LETTERS	
------------------------	----------	--------	---------	--

week ending 25 JULY 2014

Competing States in the *t-J* Model: Uniform *d*-Wave State versus Stripe State

Philippe Corboz,^{1,2} T. M. Rice,¹ and Matthias Troyer¹

Competing ground states

ARTICLE OPEN

Stripe order from the perspective of the Hubbard model Edwin W. Huang¹³, Oxistian B. Mend², Hung-Chen Jiang², Bilan Motite^{3,2} and Thomas P. Deveraux³⁴

P. Mai, S. Karakuzu, S. Johnston & TAM, in preparation

J.-P. Faye Latyr

D. Sénéchal

Faye Sénéchal, PRB 95 (2017)

43

Minuterie

- 10 minutes
- 6 minutes
- 3 minutes = 19

Minuterie

- 10 minutes
- 6 minutes
- 3 minutes
- 4 minutes
- 5 minutes = 28

Pseudogap

Maxime Charlebois

Patrick Sémon

Marion Thénault

Reymbaut, *et al.* Phys. Rev. Research **1**, 023015 (2019)

USHERBROOKE.CA/IQ 46

Zhao et al. Nat. Phys. 13, 250 (2017).

Knight shift (Q=0 spin susceptibility)

Fig. 3 Temperature and doping dependence of the q = 0 spin susceptibility. At the smaller dopings (larger filling $\langle n \rangle$), $\chi_s(T)$ exhibits a peak in the temperature dependence indicating the opening of a PG

DCA 12 sites, *t*'=0, *U* = 7

T.A. Maier, D.J. Scalapino, npj Quantum Materials (2019)

Comparison

Fig. 3 Temperature and doping dependence of the q = 0 spin susceptibility. At the smaller dopings (larger filling $\langle n \rangle$), $\chi_s(T)$ exhibits a peak in the temperature dependence indicating the opening of a PG

Knight shift

DCA 8 sites, U = 6, t' = -0.1t

Chen, LeBlanc, Gull, Nature Com. Apr. 2017 See also Jarrell *et al.* 2001, 2002

Physical origin of the pseudogap

$$= \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$

Spin susceptibility

Experiments and *T** G.Sordi et al. Phys. Rev. B 87, 041101(R) (2013) YBCO 0.225 913 400 U=9= 00.200 812 0.175 710 300 (x) 200 0.150 609 507 T 406 T 0.125 0.100 0.075 304 100 0.050 203 0.025 101 0.05 0.1 0.15 0.2 0.25 0.3 0.000 0.5 0.2 0.1 0.3 0.4 δ

Cyr-Choinières et al. Phys. Rev. B 97, 064502

A. Reymbaut, M. Thénault, L. Fratino, G. Sordi, P. Sémon, AMT, Phys. Rev. Research **1**, 023015 (2019) W Wu, A Georges, M Ferrero Phys. Rev. X 8, 021048 (2018). Bragança, Sakai, Aguiar, Civelli, PRL **120**, 067002 (2018) **Experiments and** *T**

P. Sémon, AMT, Phys. Rev. Research 1, 023015 (2019)
 W Wu, A Georges, M Ferrero Phys. Rev. X 8, 021048 (2018).
 Bragança, Sakai, Aguiar, Civelli, PRL 120, 067002 (2018)

Entropy maximum

Tallon, Loram (2001) Physica C: Supercon 349(1):53–68. Tallon, *et al.* (2004) Physica C: Supercon. 415(1):9–14.

Fig. 14. (a) Entropy $S(T_0)$ (in k_B/CuO₂) at fixed $T = T_0$ vs p, reflecting spectral weight within fixed energy windows ~ $E_F \pm 2k_B T_0$ for LSCO and YBCO (0, 2, 7% Zn and 20% Ca). (b) $\chi k_B T(T_0)$ (in μ_B^2/CuO_2) at fixed $T = T_0$ vs p for LSCO and YBCO(0, 2, 7% Zn).

Fig. 2. False color contour plot of S(T)/T for (a) the real superconducting HTS system and (b) for the normal-state extrapolated to T = 0. The plots are a composite of Bi-2212 data for p > 0.13 and Y-123 data for p < 0.13. The crossover is marked by the vertical dashed line.

Results : effect of *t***'on** *T**

Doiron-Leyraud *et al.* Nature Comm. **8** 2044

 $p^* < p_{fs}$

Doiron-Leyraud *et al.* Nature Comm. **8** 2044

Effect of *t*'

A. Reymbaut *et al.* Phys. Rev. Research **1**, 023015 (2019)

Effect of *t*'

A. Reymbaut *et al.* Phys. Rev. Research **1**, 023015 (2019)

Effect of *t*'

A. Reymbaut *et al.* Phys. Rev. Research **1**, 023015 (2019)

Results : effect of *t***'on** *T**

Results: van Hove singularity

Doiron-Leyraud *et al.* Nature Comm. **8** 2044

A.Reymbaut, *et al.* Phys. Rev. Research 1, 023015 (2019) W Wu, A Georges, M Ferrero Phys. Rev. X 8, 021048 (2018).

Minuterie

- 10 minutes
- 6 minutes
- 3 minutes
- 4 minutes = 23

d-wave superconductivity

USHERBROOKE.CA/IQ 65

Superconductivity

#1 Cooper pair, #2 Phase coherence

$$E_P = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \psi^*_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow} \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow}$$

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \left\langle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} \right\rangle \left\langle \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow}^{*} \right\rangle$$

$$|\mathrm{BCS}(\theta)\rangle = \dots + e^{iN\theta}|N\rangle + e^{i(N+2)\theta}|N+2\rangle + \dots$$
Cartoon « BCS » weak-coupling picture

$$\Delta_{\mathbf{p}} = -\frac{1}{2V} \sum_{\mathbf{p}'} U(\mathbf{p} - \mathbf{p}') \frac{\Delta_{\mathbf{p}'}}{E_{\mathbf{p}'}} (1 - 2n(E_{\mathbf{p}'}))$$

$$\mathbf{p}$$

$$\mathbf{p}$$
Exchange of spin waves?
Kohn-Luttinger
T_c with pressure
$$\mathbf{p}$$
R. B. 34, 7716 (1986).
D. J. Scalapino, E. Loh, Jr., and J. E. Hirsch
P.R. B 34, 8190-8192 (1986).
Kohn, Luttinger, P.R.L. 15, 524 (1965).

P.W. Anderson Science 317, 1705 (2007)

Exchange of spin waves, U = 4t doping 10%

Maier, Jarrell, Schulthess, Kent, White PRL 95, 237001 (2005)

74

A cartoon strong correlation picture

$$J\sum_{\langle i,j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} = J\sum_{\langle i,j\rangle} \left(\frac{1}{2}c_{i}^{\dagger}\vec{\sigma}c_{i}\right) \cdot \left(\frac{1}{2}c_{j}^{\dagger}\vec{\sigma}c_{j}\right)$$
$$d = \langle \hat{d} \rangle = 1/N\sum_{\vec{k}} (\cos k_{x} - \cos k_{y}) \langle c_{\vec{k},\uparrow}c_{-\vec{k},\downarrow} \rangle$$
$$H_{MF} = \sum_{\vec{k},\sigma} \varepsilon(\vec{k}) c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma} - 4Jm\hat{m} - Jd(\hat{d} + \hat{d}^{\dagger}) + F_{0}$$

Pitaevskii Brückner:

Pair state orthogonal to repulsive core of Coulomb interaction

P.W. Anderson ScienceMiyake, Schmitt–Rink, and Varma317, 1705 (2007)P.R. B 34, 6554-6556 (1986)

More sophisticated Slave Boson: Kotliar Liu PRB 1988

Superconducting transition temperature

T.A. Maier, D.J. Scalapino, npj Quantum Materials (2019)

DCA, 8 sites, U/t = 6 and t'=0

DCA, 12 sites, U/t = 7 and t'/t = -0.15

d-wave in mean-field

Miyake, Schmitt–Rink et Varma, PRB **34**, 6554-6556 (1986) Anderson, Baskaran, Zou et Hsu, PRL **58**, 26 (1987)

T_c controlled by J, CDMFT 2x2

Fratino et al. Sci. Rep. **6**, 22715

Some experiments that suggest $T_c < T_{pair} < T^*$ T. Kondo *et al.* PRL **111** (2013) Kondo, Takeshi, et al. Kaminski Nature Physics 2011, **7**, 21-25 A. Pushp, Parker, ... A. Yazdani, Science **364**, 1689 (2009) Lee ...Tajima (Osaka) https://arxiv.org/pdf/1612.08830 Patrick M. Rourke, et al. Hussey Nature Physics **7**, 455–458 (2011) Lee et al. J. Phys. Soc. Jpn. 86, 023701 (2017)

Condensation energy

Condensation energy

Fratino et al. Sci. Rep. **6**, 22715

Theory, see also Jarrel PRL (2004), Gull Millis PRB (2014) Experiments: Bontemps, Santander-Syro Van der Marel ...

Minuterie

- 10 minutes
- 6 minutes
- 3 minutes
- 4 minutes
- 5 minutes
- 9 minutes = 37

Kyung, Sénéchal, Tremblay, Phys. Rev. B **80**, 205109 (2009) Sénéchal, Day, Bouliane, AMST, Phys. Rev. B **87**, 075123 (2013) A. Reymbaut *et al.* PRB **94** 155146 (2016)

Im Σ_{an} and electron-phonon in Pb

Maier, Poilblanc, Scalapino, PRL (2008)

The glue CDMFT 2x2, T=0

The glue and neutrons

FIG. 3 (color online). **Q**-integrated dynamic structure factor $S(\omega)$ which is derived from the wide-*H* integrated profiles for LBCO 1/8 (squares), LSCO x = 0.25 (diamonds; filled for $E_i = 140$ meV, open for $E_i = 80$ meV), and x = 0.30 (filled circles) plotted over $S(\omega)$ for LBCO 1/8 (open circles) from [2]. The solid lines following data of LSCO x = 0.25 and 0.30 are guides to the eyes.

Wakimoto ... Birgeneau PRL (2007); PRL (2004)

Minuterie

- 10 minutes
- 6 minutes
- 3 minutes
- 4 minutes
- 5 minutes
- 9 minutes
- 3 minutes = 40

Giovanni Sordi

Patrick Sémon

A phase transition at the heart of the phase diagram (and its relation to Mott)

G. Sordi, et al. Scientific Reports 2, 547 (2012)

USHERBROOKE.CA/IQ

Kristjan Haule

Mott transition at half-filling, CDMFT 2 x 2

Change in potential energy due to large ξ

Fratino, Sémon, Charlebois, Sordi, AMST, PRB 95, 235109 (2017)

Mott and Sordi transition: CDMFT 2 x 2

G. Sordi et al. Phys. Rev. Lett. 108, 216401/1-6 (2012)
G.Sordi et al. Phys. Rev. B 87, 041101(R)/1-5 (2013)
P. Sémon, G. Sordi, *et al.*, Phys. Rev. B 89, 165113/1-6 (2014)

Physics: Plaquette eigenstates

U = 6.2; t' = 0

Sordi et al., Sci. Rep. 2 547 (2012);

See also:

Michel Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges PRB **80**, 064501 (2009)

Anisotropic triangular Downey lattice

Maxime Charlebois

Charles-David Hébert

USHERBROOKE.CA/IQ 96

Same Physics on the triangular lattice

97

Same Physics on the triangular lattice

Same Physics on the triangular lattice

Triangular lattice with DCA, 6 patches

100

Some Physics on the triangular lattice

Mott and Sordi transition on the triangular lattice DCA, N=6

1.06

1.04

0.98

0.96

102

(Topological) stability

Depends on - Cluster

Large
 changes in t'

Another Fermi Surface Reconstruction without Symmetry Breaking

• Gazit, Assaad, Sachdev Phys. Rev. X 10, 041057

Physics: Plaquette eigenstates

U = 6.2; t' = 0

Sordi et al., Sci. Rep. 2 547 (2012);

See also:

Michel Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges PRB **80**, 064501 (2009)

Quantum Critical point Back to square lattice

Yang, ... Zaanen, and Jarrell PRL 106, 047004 (2011)

SHERBROOKE

USHERBROOKE.CA/IQ106

Specific heat in the strange metal phase

B. Michon, C. Girod, Taillefer, Klein, Nature 567, 218 (2019)

107

Specific heat in the strange metal phase

A.Reymbaut, et al. Phys. Rev. Research 1, 023015 (2019)

See also for C_v Maximum: Sordi, Walsh, Sémon, and A.-M.S.T, PRB **100**, 121105(R) (2019) 108
Summary Conclusion

USHERBROOKE.CA/IQ109

Summary

- Intrinsic to the doped Mott insulator
 - Pseudogap
 - First-order transition QCP
 - d-wave superconductivity
 - Short-range spin fluctuations (J)
 - Role of charge-transfer gap and of oxygen-hole doping
- Other effects that have not been discussed V >> J
 - Reymbaut, Charlebois, Fellous Asiani, Fratino, Sémon, Sordi A.-M.S.T. PRB 94, 155146 (2016)
- Other experiment consistent with doped Mott picture
 - Frachet, ... Leboeuf, Julien Nat. Phys. 10.1038/s41567-020-0950-5

Entanglement properties

- Sharp variation in the entanglement-related properties and not broken symmetry phases characterizes the onset of the pseudogap phase at finite temperature.
 - Walsh, Sémon, Poulin, Sordi, A.-M.S.T. PRX QUANTUM 1, 020310 (2020)

Mammouth

CREATING KNOWLEDGE DRIVING INNOVATION BUILDING THE DIGITAL ECONOMY CRÉER LE SAVOIR ALIMENTER L'INNOVATION BÂTIR L'ÉCONOMIE NUMÉRIQUE

Merci

USHERBROOKE.CA/IQ