

CRSNG NSERC

Superconductivity in ultra-quantum matter Optimizing T_c

André-Marie Tremblay Université de Sherbrooke Institut quantique

> RQMP 30 September 2021 10:30

Applications

Alexandre Blais, et al. Phys. Rev. A **69**, 062320 (2004)

Photo IBM 3

Can we have superconductivity at room temperature?

Cuprates : Atomic structure

• Who ordered this?

Vishik, Rep. Prog. Phys. (2018)

- Mott insulator
- Pseudogap
- Strange metal
- Quantum critical point (QCP)
- Competing ground states
- Superconductivity in the presence of strong repulsion

• Who ordered this?

Vishik, Rep. Prog. Phys. (2018)

• Who is looking into this?

Vishik, Rep. Prog. Phys. (2018)

A highly quantum mechanical problem

USHERBROOKE.CA/IQ

Outline

- Method
- One-band Hubbard model
 - d-wave superconductivity
- Three-band Hubbard model : oxygen can probe the details
 - Calculations explain three experiments that show how to optimize dwave superconductivity

Take home messages

- A detailed picture of the origin of superconductivity in cuprates follows from a model that takes into account Cu, O, kinetic energy and repulsion
- We need to look beyond traditional tools of solid state physics to work this out.

Method : The precursors

Hohenberg-Kohn : Exchange correlation Kohn-Sham : Basis set Density Functional Theory

SHERBROOKE

Method

Metzner, Vollhardt PRL **62**, 324 (1989) Georges, Kotliar, PRB **45**, 6479 (1992) Jarrell PRL **69**, 168 (1992) Review: Georges, Kotliar, Krauth, Rozenberg, RMP **68**, 13 (1996)

Dynamical Mean-Field Theory : DMFT

UNIVERSITÉ DE SHERBROOKE

Localized and delocalized pictures

Localized

Lichtenstein *et al.*,PRB 2000 Kotliar *et al.*, PRB 2000 M. Potthoff, EJP 2003

REVIEWS Maier, Jarrell et al., RMP. (2005) Kotliar *et al.* RMP (2006) AMST *et al.* LTP (2006)

$$(G^{-1})_{ij} = (G_0^{-1})_{ij} - \Sigma_{ij}$$

Localized and delocalized pictures C-DMFT

Localized

$$G_{ij} = \int \frac{d^d \tilde{k}}{(2\pi)^d} \left(\frac{1}{(i\omega_n + \mu)I - \varepsilon(\tilde{k}) - \Sigma} \right)_{ij}$$

$$(G^{-1})_{ij} = (G_0^{-1})_{ij} - \Sigma_{ij}$$

Impurity solvers

USHERBROOKE.CA/IQ 29

Impurity solver (Exact diagonalisation)

Caffarel, Krauth, PRL 72 1545 (1994)

QCM David Sénéchal

Impurity solver : continuous-time quantum Monte Carlo

$$Z = \int \mathcal{D}[\psi^{\dagger}, \psi] \,\mathrm{e}^{-S_{c} - \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{\mathbf{K}} \psi_{\mathbf{K}}^{\dagger}(\tau) \Delta(\tau, \tau') \psi_{\mathbf{K}}(\tau')}_{\mathbf{K}}$$

Hybridization expansion :

Werner Millis PRB 74, 155107 (2006) Werner Millis B 75, 085108 (2007) Haule, PRB 75, 155113 (2007) Sémon, Sordi, AMST PRB 89, 165113 (2014) Sémon, Yee, Haule, AMST PRB 90, 075149 (2014)

LPSCoreCT-HYBiQISTComCTQMC

Some groups using these methods for cuprates

- Europe:
 - Georges, Parcollet, Ferrero, Civelli (Paris)
 - Lichtenstein, Potthoff, (Hamburg) Aichhorn (Graz), Liebsch (Jülich) de Medici (Grenoble) Capone (Italy)
- USA:
 - Gull (Michigan) Millis (Columbia)
 - Kotliar, Haule (Rutgers) (Haule, Kotliar PRB 76, 104509 (2007))
 - Jarrell (Louisiana)
 - Maier, Okamoto (Oakridge)
- Japan
 - Imada (Tokyo) Sakai, Tsunetsugu, Motome
- China
 - Wei Wu ...

Critique

USHERBROOKE.CA/IQ 34

+ and -

- Long range order:
 - No mean-field factorization on the cluster
 - Symmetry breaking allowed in the bath
- Included exactly:
 - Short-range dynamical and spatial correlations
- Missing:
 - Long wavelength p-h and p-p fluctuations
 - Hence good when the corresponding correlation lengths are small

Cuprates as doped Mott insulators

Mott Insulator : X-Ray absorption

Meinders et al. PRB 48, 3916 (1993)

d-wave superconductivity One band model

USHERBROOKE.CA/IQ 71

Superconductivity

#1 Cooper pair, #2 Phase coherence

$$E_P = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \psi^*_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow} \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow}$$

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \left\langle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} \right\rangle \left\langle \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow}^{*} \right\rangle$$

$$|\mathrm{BCS}(\theta)\rangle = \dots + e^{iN\theta}|N\rangle + e^{i(N+2)\theta}|N+2\rangle + \dots$$

The weak-correlation limit : Boson exchange

USHERBROOKE.CA/IQ

Cartoon « BCS » weak-coupling picture

 $d_{x}^{2} - v^{2}$

P.W. Anderson Science 317, 1705 (2007)

The strong-correlation limit : Superexchange

USHERBROOKE.CA/IQ

A cartoon strong correlation picture

$$\hat{\mathcal{H}}_{mod\ \ elle\ t-J} = -t \sum_{\langle i,j \rangle \ \sigma} \hat{P}\left(\hat{c}_{i\sigma}^{\dagger}\hat{c}_{j\sigma} + c.h\right)\hat{P} + J \sum_{\langle i,j \rangle} \left(\hat{\vec{S}}_{i}.\hat{\vec{S}} - \frac{1}{4}\hat{n}_{i}\hat{n}_{j}\right)$$

$$\begin{array}{lll} \rightarrow J\hat{S}_{i}^{z}\hat{S}_{j}^{z} &= J(\hat{n}_{i\uparrow}-\hat{n}_{i\downarrow})(\hat{n}_{j\uparrow}-\hat{n}_{j\downarrow}) \\ &= J(\hat{c}_{i\uparrow}^{\dagger}\hat{c}_{i\uparrow}-\hat{c}_{i\downarrow}^{\dagger}\hat{c}_{i\downarrow})(\hat{c}_{j\uparrow}^{\dagger}\hat{c}_{j\uparrow}-\hat{c}_{j\downarrow}^{\dagger}\hat{c}_{j\downarrow}) \\ &= J(\hat{c}_{i\uparrow}^{\dagger}\hat{c}_{i\downarrow}\hat{c}_{i\downarrow}\hat{c}_{j\uparrow}\hat{c}_{i\uparrow}+\hat{c}_{i\uparrow}^{\dagger}\hat{c}_{i\uparrow}\hat{c}_{j\downarrow}\hat{c}_{j\downarrow}) + \dots \\ &= -J(\hat{c}_{i\downarrow}^{\dagger}\hat{c}_{i\downarrow}\hat{c}_{i\downarrow}\hat{c}_{j\uparrow}+\hat{c}_{i\uparrow}^{\dagger}\hat{c}_{i\uparrow}\hat{c}_{j\downarrow}\hat{c}_{j\downarrow}) + \dots \\ &= -J(\hat{c}_{j\uparrow}^{\dagger}\hat{c}_{i\downarrow}^{\dagger}\hat{c}_{i\downarrow}\hat{c}_{j\uparrow}+\hat{c}_{i\uparrow}^{\dagger}\hat{c}_{j\downarrow}\hat{c}_{j\downarrow}\hat{c}_{j\downarrow}) + \dots \\ \end{array}$$

Pitaevskii Brückner:

Pair state orthogonal to repulsive core of Coulomb interaction

P.W. Anderson Science 317, 1705 (2007) More sophisticated Slave Boson: Kotliar Liu PRB 1988

Summary of what we learn from one band d-wave

- Lots of singlets near half-filling
- Superconductivity strongest when kinetic and potential energy are comparable (Scales like *J* at large *U*)
- Condensation energy when strong correlations : (confirmed by experiment)
 - From kinetic energy near half-filling
 - From potential energy at large doping
- Phase fluctuations important for the shape of the d-wave dome

USHERBROOKE.CA/IQ132

Three-band Sidhartha Dash Nicolas Kowalski (Emery VSA) **Hubbard model**

V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987)

C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State Communications 62, 681-685 (1987), ISSN 0038-1098,

PNAS 118 (40) e2106476118 (2021)

UNIVERSITÉ DE SHERBROOKE

Patrick Sémon

David Sénéchal

USHERBROOKE.CA/10133

Bands : Copper-Oxygen hybridization

Interactions : Charge-transfer insulator

"Ionic" limiting cases with manageable sign problem

d-wave Superconductivity

$$d = \langle \hat{d} \rangle = 1/N \sum_{\vec{k}} (\cos k_x - \cos k_y) \langle c_{\vec{k},\uparrow} c_{-\vec{k},\downarrow} \rangle$$

USHERBROOKE.CA/IQ138

 $d_{x}^{2} - y^{2}$

х

Three experimental observations on optimizing T_c

There are different kinds of cuprates : All with CuO₂ planes

#1 Optimizing T_c with oxygen hole content

Rybicki,,, Haase, Nat. Comm. 7, 11413 (2016)

Results

•
$$\varepsilon_p - \varepsilon_d = 7.0$$
 $t_{pd} = 1.5$, $t_{pp} = 1.0$, $t'_{pp} = 1.0$

Critical Temperature

D. Rybicki et al. "Perspective on the phase diagram of cuprate high-temperature superconductors," Nature Communications, vol. 7, p. 11413, 2016

Kowalski, Dash, Sémon, Sénéchal, A-M.T. PNAS **118** (40) e2106476118 (2021)

More realistic models

USHEREROOKE.CA/IQ

Optimizing T_c

п		charge	dopants	structure	hamiltonian		
•	HgO _δ	balances -2 charge	supplies	harbors dopants	tunes chemical potential		
OÃO	BaO	neutral	inert	protects CuO ₂ from disorder	tunes in-plane t, t', U		
~~~	CuO ₂	-2 charge/u.c.	accepts	roughly sets lattice const.	superconducts		
0,0	BaO	(same as other CaS layer)					

Chuck-Hou Yee et al EPL 111 17002 (2015)

Electronic structure

	Compound	$\epsilon_d - \epsilon_p \; (\mathrm{eV})$	t_{pd} (eV)	t_{pp} (eV)	$t_{pp'}$ (eV)	t'/t	layers	$d_{\rm Cu-O}^{\rm apical}$ (Å)	$T_{\rm c}$ (K)
(1)	La_2CuO_4	2.61	1.39	0.640	0.103	0.070	1	2.3932	38
(2)	$Pb_2Sr_2YCu_3O_8$	2.32	1.30	0.673	0.160	0.108	2	2.3104	70
(3)	$Ca_2CuO_2Cl_2$	2.21	1.27	0.623	0.132	0.085	1	2.7539	26
(4)	$La_2CaCu_2O_6$	2.20	1.31	0.644	0.152	0.120	2	2.2402	45
(5)	$\mathrm{Sr}_2\mathrm{Nd}_2\mathrm{Nb}\mathrm{Cu}_2\mathrm{O}_{10}$	2.10	1.25	0.612	0.144	0.110	2	2.0450	28
(6)	${ m Bi}_2{ m Sr}_2{ m CuO}_6$	2.06	1.36	0.677	0.153	0.105	1	2.5885	24
(7)	$YBa_2Cu_3O_7$	2.05	1.28	0.673	0.150	0.110	2	2.0936	93
(8)	$HgBa_2CaCu_2O_6$	1.93	1.28	0.663	0.187	0.133	2	2.8053	127
(9)	$HgBa_2CuO_4$	1.93	1.25	0.649	0.161	0.122	1	2.7891	90
(10)	$\mathrm{Sr}_{2}\mathrm{CuO}_{2}\mathrm{Cl}_{2}$	1.87	1.15	0.590	0.140	0.108	1	2.8585	30
(11a)	$HgBa_2Ca_2Cu_3O_8$ (outer)	1.87	1.29	0.674	0.184	0.141	3	2.7477	135
(11b)	$HgBa_2Ca_2Cu_3O_8$ (inner)	1.94	1.29	0.656	0.167	0.124	3	2.7477	135
(12)	$Tl_2Ba_2CuO_6$	1.79	1.27	0.630	0.150	0.121	1	2.7143	90
(13)	$LaBa_2Cu_3O_7$	1.77	1.13	0.620	0.188	0.144	2	2.2278	79
(14)	${ m Bi_2Sr_2CaCu_2O_8}$	1.64	1.34	0.647	0.133	0.106	2	2.0033	95
(15)	$Tl_2Ba_2CaCu_2O_8$	1.27	1.29	0.638	0.140	0.131	2	2.0601	110
(16a)	$\mathrm{Bi}_2\mathrm{Sr}_2\mathrm{Ca}_2\mathrm{Cu}_3\mathrm{O}_{10}~(\mathrm{outer})$	1.24	1.32	0.617	0.159	0.138	3	1.7721	108
(16a)	${\rm Bi_2Sr_2Ca_2Cu_3O_{10}}$ (inner)	2.24	1.32	0.678	0.198	0.121	3	1.7721	108

Weber, Yee, Haule, Kotliar, EPL 100, 2012

Density of states

$$\circ \varepsilon_p - \varepsilon_d = 2.3, t_{pd} = 2.1, t_{pp} = 1.0, t'_{pp} = 0.2$$
149

T = 0 superconducting domes for the covalent model

Kowalski, Dash, Sémon, Sénéchal, A-M.T. PNAS **118** (40) e2106476118 (2021)

#2 Optimizing T_c with CT gap Δ (Oxygen as a witness)

Kowalski, Dash, Sémon, Sénéchal, A-M.T. PNAS **118** (40) e2106476118 (2021)**5**4

Experimental puzzle #2 with Charge Transfer Gap

Optimal doping

Weber, Yee, Haule, Kotliar, EPL 100, 2012

Kowalski, Dash, Sémon, Sénéchal, A-M.T. PNAS 118 (40) e2106476118 (2021)55

Charge-transfer gap, oxygen hole content

Kowalski, Dash, Sémon, Sénéchal, A-M.T. PNAS **118** (40) e2106476118 (2021)**5**6

Charge transfer gap and oxygen hole content : Oxygen as a witness

Copper pairing mechanism : superexchange

USHERBROOKE.CA/IQ159

#3 Optimizing T_c with superexchange

Lichen Wang, et al. arXiv 2011.05029

Kyung, Sénéchal, Tremblay, Phys. Rev. B **80**, 205109 (2009) Sénéchal, Day, Bouliane, AMST, Phys. Rev. B **87**, 075123 (2013) A. Reymbaut *et al.* PRB **94** 155146 (2016)

Im Σ_{an} and electron-phonon in Pb

Maier, Poilblanc, Scalapino, PRL (2008)

The glue CDMFT 2x2, T=0

Bonus

USHERBROOKE.CA/IQ166

T_c and total hole concentration are not well correlated

T. Kondo et al.

Journal of Electron Spectroscopy and Related Phenomena 137-140, 663 (2004)

Bonus: total hole doping does not explain max order parameter for the two models

Bonus : Importance of covalency

Affinity Energy ($E(M^{2+}) - E(M^{1+})$) of first row Trans. Metals in relation to Ionization Energy of Oxygen ($E(O^{2-}) - E(O^{1-})$)

Also, Zaanen, Sawatzky, Allen (prl 1985).

C. M. Varma and T. Giamarchi, *Model for copper oxide metals* and superconductors (Elsevier Science B.V., 1995).

Summary Conclusion

USHERBROOKE.CA/IQ170

Optimizing Tc

- Spin 1/2
- One band
- Two-dimensions
- Strong covalency between chalchogen and transition metal.
 Chalcogen screens U
- Charge-transfer gap just opening (intermediate interactions).
- Large J at half-filling
- ... and more

Chuck-Hou Yee *et al EPL* **111** 17002 (2015) Stanev *et al.*, npj Computational Materials **4**, 29 (2018) Liu *et al.* APL Materials **8**, 061104 (2020)

Optimizing T_c

Π		charge	dopants	structure	hamiltonian		
•	HgO _δ	balances -2 charge	supplies	harbors dopants	tunes chemical potential		
OÃO	BaO	neutral	inert	protects CuO ₂ from disorder	tunes in-plane t, t', U		
~~~	CuO ₂	-2 charge/u.c.	accepts	roughly sets lattice const.	superconducts		
0,0	BaO	(same as other CaS layer)					

$Hg(CaS)_2CuO_2$

Chuck-Hou Yee et al EPL 111 17002 (2015)

Merci Thank you

USHERBROOKE.CA/IQ