

Superconductivity in the three-band model of cuprates vs experiments

André-Marie Tremblay Université de Sherbrooke Institut quantique

CORPES22 Virtual meeting, July 11, 2022

Cuprates : Atomic structure

Outline

- Method
- 3-band Model
- Three experiments that tell us how to optimize Tc.
- Pairing mechanism
- Bonus
- Conclusion

Method : Model building

Hohenberg-Kohn : Exchange correlation Kohn-Sham : Basis set Density Functional Theory

Method Solving the models

Metzner, Vollhardt PRL **62**, 324 (1989) Georges, Kotliar, PRB **45**, 6479 (1992) Jarrell PRL **69**, 168 (1992) Review: Georges, Kotliar, Krauth, Rozenberg, RMP **68**, 13 (1996)

Dynamical Mean-Field Theory : DMFT

Method

Cluster generalization of Dynamical Mean-Field Theory : DMFT

REVIEWS Maier, Jarrell et al., RMP. (2005) Kotliar *et al.* RMP (2006) AMST *et al.* LTP (2006)

Lichtenstein *et al.*,PRB 2000 Kotliar *et al.*, PRB 2000 M. Potthoff, EJP 2003

Localized and delocalized pictures C-DMFT

Delocalized

Localized

$$G_{ij} = \int \frac{d^d \tilde{k}}{(2\pi)^d} \left(\frac{1}{(i\omega_n + \mu)I - \varepsilon(\tilde{k}) - \Gamma_O(i\omega_n) - \Sigma(i\omega_n)} \right)_{ij} (G^{-1})_{ij} = (G_0^{-1})_{ij} - \Sigma_{ij}$$

REVIEWS

Maier, Jarrell et al., RMP. (2005) Kotliar *et al.* RMP (2006) AMST *et al.* LTP (2006) Lichtenstein *et al.*,PRB 2000 Kotliar *et al.*, PRB 2000 M. Potthoff, EJP 2003

Impurity solvers

USHERBROOKE.CA/IQ 23

Impurity solver : continuous-time quantum Monte Carlo

$$Z = \int \mathcal{D}[\psi^{\dagger}, \psi] \,\mathrm{e}^{-S_{c} - \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{\mathbf{K}} \psi_{\mathbf{K}}^{\dagger}(\tau) \Delta(\tau, \tau') \psi_{\mathbf{K}}(\tau')}_{\mathbf{K}}$$

Hybridization expansion :

Werner Millis PRB 74, 155107 (2006) Werner Millis B 75, 085108 (2007) Haule, PRB 75, 155113 (2007) Sémon, Sordi, AMST PRB 89, 165113 (2014) Sémon, Yee, Haule, AMST PRB 90, 075149 (2014)

LPSCoreCT-HYBiQISTComCTQMC

Impurity solver (Exact diagonalisation)

Caffarel, Krauth, PRL 72 1545 (1994)

QCM David Sénéchal

Some groups using these methods for cuprates

- Europe:
 - Georges, Parcollet, Ferrero, Civelli, Fratino (Paris)
 - Sordi (London), Lichtenstein, Potthoff, (Hamburg) Aichhorn (Graz), Liebsch (Jülich) de Medici (Grenoble) Capone (Italy)
- USA:
 - Gull (Michigan) Millis (Columbia)
 - Kotliar, Haule (Rutgers) (Haule, Kotliar PRB 76, 104509 (2007))
 - Jarrell (Louisiana)
 - Maier, Okamoto (Oakridge)
- Japan
 - Imada (Tokyo) Sakai, Tsunetsugu, Motome
- China
 - Wei Wu ...

Critique of the method: advantages and limitations

USHERBROOKE.CA/IQ 28

+ and -

- Long range order:
 - No mean-field factorization on the cluster
 - Symmetry breaking allowed in the bath
- Included exactly:
 - Short-range dynamical and spatial correlations
- Missing:
 - Long wavelength p-h and p-p fluctuations
 - Hence good when the corresponding correlation lengths are small

Three-band (Emery VSA) **Hubbard model**

Sidhartha Dash Nicolas Kowalski

V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987)

C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State Communications 62, 681-685 (1987), ISSN 0038-1098,

PNAS 118 (40) e2106476118 (2021)

Patrick Sémon

David Sénéchal

Cartoon of the charge transfer insulator

"Ionic" limiting cases with manageable sign problem

Cu

Meinders et al. PRB 48, 3916 (1993) 37

d-wave Superconductivity

USHERBROOKE.CA/IQ 38

 $d_{x}^{2} c_{-y}^{2}$

х

There are different kinds of cuprates : All with CuO₂ planes

Three experimental observations on optimizing T_c

The strategy

The strategy

- Variations in microscopic parameters in Hamiltonian
 - "Ionic" class of models
 - Large value of $\varepsilon_p \varepsilon_d$
 - "Covalent" class of models
 - Smaller and more realistic value of $\varepsilon_p \varepsilon_d$

#1 Optimizing T_c with oxygen hole content

USHERBROOKE.CA/IQ 43

#1 Optimizing T_c with oxygen hole content

Rybicki,,, Haase, Nat. Comm. 7, 11413 (2016)

"Ionic" limiting cases with manageable sign problem

• $\varepsilon_p - \varepsilon_d = 7.0$, $t_{pd} = 1.5$, $t_{pp} = 1.0$, $t'_{pp} = 1.0$

Also, Fratino, Sémon, Sordi, AMT, PRB **93**, 245147 (2016) **46**

Results

•
$$\varepsilon_p - \varepsilon_d = 7.0$$
 $t_{pd} = 1.5$, $t_{pp} = 1.0$, $t'_{pp} = 1.0$

Critical Temperature

D. Rybicki et al. "Perspective on the phase diagram of cuprate high-temperature superconductors," Nature Communications, vol. 7, p. 11413, 2016

Kowalski, Dash, Sémon, Sénéchal, A-M.T. PNAS **118** (40) e2106476118 (2021)

"Covalent" models (T = 0)

"Realistic"

$$\circ \epsilon_p - \epsilon_d = 2.3, t_{pd} = 2.1, t_{pp} = 1.0, t'_{pp} = 0.2$$

49

Electronic structure

	Compound	$\epsilon_d - \epsilon_p \; (eV)$	t_{pd} (eV)	t_{pp} (eV)	$t_{pp'}$ (eV)	t'/t	layers	$d_{\rm Cu-O}^{\rm apical}$ (Å)	$T_{\rm c}$ (K)
(1)	La_2CuO_4	2.61	1.39	0.640	0.103	0.070	1	2.3932	38
(2)	$Pb_2Sr_2YCu_3O_8$	2.32	1.30	0.673	0.160	0.108	2	2.3104	70
(3)	$Ca_2CuO_2Cl_2$	2.21	1.27	0.623	0.132	0.085	1	2.7539	26
(4)	$La_2CaCu_2O_6$	2.20	1.31	0.644	0.152	0.120	2	2.2402	45
(5)	$\mathrm{Sr}_2\mathrm{Nb}\mathrm{Cu}_2\mathrm{O}_{10}$	2.10	1.25	0.612	0.144	0.110	2	2.0450	28
(6)	${ m Bi}_2{ m Sr}_2{ m CuO}_6$	2.06	1.36	0.677	0.153	0.105	1	2.5885	24
(7)	$YBa_2Cu_3O_7$	2.05	1.28	0.673	0.150	0.110	2	2.0936	93
(8)	$HgBa_2CaCu_2O_6$	1.93	1.28	0.663	0.187	0.133	2	2.8053	127
(9)	$HgBa_2CuO_4$	1.93	1.25	0.649	0.161	0.122	1	2.7891	90
(10)	$\mathrm{Sr}_{2}\mathrm{CuO}_{2}\mathrm{Cl}_{2}$	1.87	1.15	0.590	0.140	0.108	1	2.8585	30
(11a)	$HgBa_2Ca_2Cu_3O_8$ (outer)	1.87	1.29	0.674	0.184	0.141	3	2.7477	135
(11b)	$HgBa_2Ca_2Cu_3O_8$ (inner)	1.94	1.29	0.656	0.167	0.124	3	2.7477	135
(12)	$Tl_2Ba_2CuO_6$	1.79	1.27	0.630	0.150	0.121	1	2.7143	90
(13)	$LaBa_2Cu_3O_7$	1.77	1.13	0.620	0.188	0.144	2	2.2278	79
(14)	${ m Bi_2Sr_2CaCu_2O_8}$	1.64	1.34	0.647	0.133	0.106	2	2.0033	95
(15)	$Tl_2Ba_2CaCu_2O_8$	1.27	1.29	0.638	0.140	0.131	2	2.0601	110
(16a)	$\mathrm{Bi}_2\mathrm{Sr}_2\mathrm{Ca}_2\mathrm{Cu}_3\mathrm{O}_{10}~(\mathrm{outer})$	1.24	1.32	0.617	0.159	0.138	3	1.7721	108
(16a)	$\mathrm{Bi}_2\mathrm{Sr}_2\mathrm{Ca}_2\mathrm{Cu}_3\mathrm{O}_{10}$ (inner)	2.24	1.32	0.678	0.198	0.121	3	1.7721	108

Weber, Yee, Haule, Kotliar, EPL 100, 2012

#1 Optimizing T_c with oxygen hole content

Rybicki,,, Haase, Nat. Comm. 7, 11413 (2016)

T = **0** exact diagonalization solver : order parameter

$$2\hat{\Delta} = \sum_{\langle ij \rangle_x} \left(d_{i,\uparrow} d_{j,\downarrow} - d_{i,\downarrow} d_{j,\uparrow} \right) - \sum_{\langle ij \rangle_y} \left(d_{i,\uparrow} d_{j,\downarrow} - d_{i,\downarrow} d_{j,\uparrow} \right) + \text{H.c.},$$

T = 0 superconducting domes for the covalent models

Kowalski, Dash, Sémon, Sénéchal, A-M.T. PNAS **118** (40) e2106476118 (2021)

T = 0 max order parameter for the two models

#2 Optimizing T_c with Charge Transfer gap ϵ

(Oxygen as a witness)

USHERBROOKE.CA/IQ 58

Experimental puzzle #2 with Charge Transfer Gap

Optimal doping

Acharya et al. Phys. Rev. X 8, 021038 (2018)

Kowalski, Dash, Sémon, Sénéchal, A-M.T. PNAS 118 (40) e2106476118 (2021)60

Charge-transfer gap, oxygen hole content

Kowalski, Dash, Sémon, Sénéchal, A-M.T. PNAS **118** (40) e2106476118 (2021)61

Charge transfer gap and oxygen hole content : Oxygen as a witness

#3 Optimizing T_c with superexchange

USHERBROOKE.CA/IQ 63

Lichen Wang, Nat. Comm. **13**, 3163 (2022)

Some work on d-wave in one-band

- G. Kotliar, J. Liu, Superconducting instabilities in the large-U limit of a generalized Hubbard model. Phys. Rev. Lett. 61, 1784–1787 (1988).
- N. E. Bickers, D. J. Scalapino, S. R. White, Conserving approximations for strongly correlated electron systems: Bethe-Salpeter equation for the two dimensional Hubbard model. Phys. Rev. Lett. 62, 961–964 (1989)
- B. Kyung, D. Sénéchal, A.-M. S. Tremblay, Pairing dynamics in strongly correlated superconductivity. Phys. Rev. B Condens. Matter Mater. Phys. 80, 205109 (2009).
- S. S. Kancharla et al., Anomalous superconductivity and its competition with antiferromagnetism in doped Mott insulators.
 Phys. Rev. B Condens. Matter Mater. Phys. 77, 184516 (2008).
- K. Haule, G. Kotliar, Strongly correlated superconductivity: A plaquette dynamical mean-field theory study. Phys. Rev. B Condens. Matter Mater. Phys. 76, 104509 (2007).
- D. J. Scalapino, A common thread. Physica C Supercond. 470 (suppl. 1), S1–S3 (2010).
- Gull, E. and Millis, A.J. Pairing glue in the two-dimensional Hubbard model. Phys. Rev. B 90, 041110(R) (2014)
- L. Fratino, P. Sémon, G. Sordi, A. M. Tremblay, An organizing principle for two-dimensional strongly correlated superconductivity. Sci. Rep. 6, 1–6 (2016). 44.
- Hong-Chen Jiang and Thomas P. Devereaux Superconductivity in the doped Hubbard model and its interplay with next-nearest hopping t', Science 365, 1424 (2019)
- Romer, A. et al. Pairing in the two-dimensional Hubbard model from weak to strong coupling. PRR 2, 013108 (2020)
- Danilov et al. Degenerate plaquette physics as key ingredient of high-temperature superconductivity in cuprates, npj Quantum Materials (2022)7:50

Critique

- M. Qin et al., Absence of superconductivity in the pure two-dimensional Hubbard model. Phys. Rev. X 10, 031016 (2020)
- D. C. Peets et al., X-ray absorption spectra reveal the inapplicability of the single-band Hubbard model to overdoped cuprate superconductors. Phys. Rev. Lett. 103, 087402 (2009).

Other references on the three-band model

C. Weber, T. Giamarchi, C. M. Varma,

Phase diagram of a three-orbital model for high-Tc cuprate superconductors. Phys. Rev. Lett. 112, 117001 (2014).

- L. Fratino, P. Sémon, G. Sordi, A.-M. S. Tremblay,
 - Pseudogap and superconductivity in two-dimensional doped charge-transfer insulators. Phys. Rev. B 93, 245147 (2016)
- Z.-H. Cui et al.,

Ground-state phase diagram of the three-band Hubbard model from density matrix embedding theory.

Phys. Rev. Res. 2, 043259 (2020).

- M. Zegrodnik, A. Biborski, M. Fidrysiak, J. Spalek, Superconductivity in the three band model of cuprates: Nodal direction characteristics and influence of intersite interactions. J. Phys. Condens. Matter 33, 415601 (2021).
- P. Mai, G. Balduzzi, S. Johnston, T. A. Maier, Orbital structure of the effective pairing interaction in the high-temperature superconducting cuprates. NPJ Quantum Mater. 6, 1–5 (2021).
- P. Mai et al.,

Pairing correlations in the cuprates: A numerical study of the three-band Hubbard model. Phys. Rev. B 103, 144514 (2021).

Bonus

USHERBROOKE.CA/IQ 70

T_c and total hole concentration are not well correlated

T. Kondo et al.

Journal of Electron Spectroscopy and Related Phenomena 137-140, 663 (2004)

Bonus: total hole doping does not explain max order parameter for the two classes of models

Bonus : Importance of covalency

Affinity Energy ($E(M^{2+}) - E(M^{1+})$) of first row Trans. Metals in relation to Ionization Energy of Oxygen ($E(O^{2-}) - E(O^{1-})$)

C. M. Varma and T. Giamarchi, *Model for copper oxide metals* and superconductors (Elsevier Science B.V., 1995).

Summary Conclusion

USHERBROOKE.CA/IQ 74

Pairing at small and large U : An analogy

Yee et al Phys. Rev. B 89, 094517 (2014) Acharya et al Phys. Rev. X 8, 021038 (2018)⁷⁵

Optimizing Tc

- Spin ¹/₂
- One band
- Two-dimensions
- Strong covalency between chalcogen and transition metal.
 Chalcogen screens U
- Charge-transfer gap just opening (intermediate interactions).
- Large J at half-filling
- ... and more

C. Weber, PNAS 2021 Vol. 118 No. 46 e2115874118
Chuck-Hou Yee *et al EPL* 111 17002 (2015)
Stanev *et al.*, npj Computational Materials 4, 29 (2018)
Liu *et al.* APL Materials 8, 061104 (2020)

Optimizing T_c

Π		charge	dopants	structure	hamiltonian
•	HgO _δ	balances -2 charge	supplies	harbors dopants	tunes chemical potential
OÃO	BaO	neutral	inert	protects CuO ₂ from disorder	tunes in-plane t, t', U
~~~	CuO ₂	-2 charge/u.c.	accepts	roughly sets lattice const.	superconducts
0,0	BaO		(same as other CaS layer)		

$Hg(CaS)_2CuO_2$

Chuck-Hou Yee et al EPL 111 17002 (2015)

Take home messages

- A detailed picture of the origin of superconductivity in cuprates follows from a model that takes into account Cu, O, kinetic energy and repulsion
- We need to look beyond traditional tools of solid state physics to work this out.

Merci Thank you

USHERBROOKE.CA/IQ