

Lecture 2: Doped Mott insulators Strongly correlated superconductivity and its normal phase

André-Marie Tremblay

Collège de France, 16 mars 2015 17h00 à 18h30

Last time

$$H = \sum_{ij\sigma} (t_{ij} - \delta_{ij}\mu) c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Phase diagram for hole-doped cuprates

Getting rid of the CDW

Cyr-Choinière et al, arxiv1503.02033

2d Hubbard: Quantum cluster method

Last time

CDMFT: Emergent first-order transition

- - Is the pseudogap (PG) a crossover or a phase transition ?
- Relation between CDW and the PG?
- - Why CDW peaked at 12% doping ?
- Origin of nematicity ?
- Why a dome of SC ?
- Why superconducting ?
- Does a one-band model capture the key physics ?
- AFM QCP important?
- Lessons from other SC?

Today

- « Normal » state of cuprates
 - Signatures of Mott physics away from n=1
- Superconductivity
 - What is special about strongly correlated SC
 - Origin

Strong correlation pseudogap (U > 8t)

- Different from Mott gap that is local (all k) not tied to ω=0.
- Pseudogap close to ω=0 and only in regions nearly connected by (π,π). (e and h),
- Pseudogap is independent of Hole-doped, 10% cluster shape (and size) in CPT.
- Not caused by AFM LRO
 - No LRO, few lattice spacings.
 - Not very sensitive to t'
 - Scales like *t*.

Sénéchal, AMT, PRL 92, 126401 (2004).

F. Ronning et al. Jan. 2002, Ca_{2-x}Na_xCuO₂Cl₂

Can be seen with 2 site DCA

Michel Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges PRB **80**, 064501 (2009)

Seen by all groups and DCA, CDMFT

Momentum dependence of Σ

Gull, Werner, Millis, (2009)

Mott transition at n = 1

Interaction-induced Mott transition, n = 1

plaquette

H. Park, K. Haule, and G. Kotliar PRL **101**, 186403 (2008) Balzer, Kyung, Sénécal, Tremblay, Potthof EPL, **85** (2009) 17002

Local moment and Mott transition

Local moment and Mott transition

Doped Mott insulator

Compressibility divergence at Mott and coexistence (single-site DMFT)

G. Kotliar, S. Murthy, and M. J. Rozenberg, Phys. Rev. Lett. **89**, 046401 (2002).

S. Murthy, Rutgers thesis 2004

K. Frikach, M. Poirier, et al. PRB 61, R6491 (2000).
S. R. Hassan, A. Georges, and H. R. Krishnamurthy PRL 94, 036402 (2005)

Anomalous metallic state near half-filling (examples)

- Pseudogap
 - B. Kyung et al., PRB 73, 165114 (2006).
 - N. S. Vidhyadhiraja et al., PRL 102, 206407 (2009).
 - A. Liebsch and N.-H. Tong, PrB 80, 165126 (2009).
- Momentum selective transition
 - P. Werner et al., PRB 80, 045120 (2009).
 - M. Ferrero et al., EPL 85, 57 009 (2009).
- Competition between Kondo and J
 - K. Haule and G. Kotliar, Phys. Rev. B 76, 104509 (2007).
 - M. Ferrero et al., Europhys. Lett. 85, 57 009 (2009).
 - K. Haule and G. Kotliar, Phys. Rev. B 76, 092503 (2007).

Previous cluster results at finite doping

K. Haule and G. Kotliar, Phys. Rev. B **76**, 092503 (2007)

Previous results

FIG. 2. N_c =8 results. Filling *n* versus chemical potential below T_c , at T=0.071*t*. Two solutions describing a hysteresis are found: one incompressible with $n \approx 1$ (squares) and a doped one (circles). Inset: stability of the two solutions versus DCA iterations when μ = 2.96*t* (middle of the hysteresis, corresponding to the dotted line in the main figure).

A. Macridin, M. Jarrell, and T. Maier, Phys. Rev. B **74**, 085104 (2006)

Phase separation on electron-doped side

Crossovers and transition

A. Liebsch, N.H. Tong, PRB 80, 165126 (2009)

Variational Monte Carlo

T. Misawa M. Imada PRB 90, 115137 (2014)

Giovanni Sordi

G. Sordi, K. Haule, A.-M.S.T PRL, **104**, 226402 (2010) and Phys. Rev. B. **84**, 075161 (2011)

Doping-induced Mott transition (t'=0)

µ Not just adding new piece: Kristjan Haule
 Lesson from DMFT, first order transition + critical
 point governs finite *T* phase diagram

First order transition at finite doping

 $n(\mu)$ for several temperatures: T/t = 1/10, 1/25, 1/50

Sordi et al. PRL 2010, PRB 2011

First order transition at finite doping

t' = 0

 $n(\mu)$ for several temperatures: T/t = 1/10, 1/25, 1/50

Sordi et al. PRL 2010, PRB 2011

Hysteretic behavior: fingerprint first order transition!

Overall phase diagram

Critical doping as a function of U increases

A finite-doping first order transition, linked to Mott transition up to optimal doping

Doping dependence of critical point as a function of U

Characterisation of the phases (U=6.2t)

 $U > U_{\rm MIT}$:

- 1. Mott insulator (MI)
- 2. Underdoped phase (UD): $\delta < \delta_{\rm c}$
- 3. Overdoped phase (OD): $\delta > \delta_{\rm c}$
- 4. Coexistence/forbidden region

Here "optimal doping" $\delta_{\rm c} =$ doping at which the 1st order transition occurs

How does the UD phase differ from the OD phase?

Giovanni Sordi

Patrick Sémon

Kristjan Haule

G. Sordi, et al. Scientific Reports 2, 547 (2012)

What is the Widom line?

McMillan and Stanley, Nat Phys 2010

- it is the continuation of the coexistence line in the supercritical region
- ▶ line where the maxima of different response functions touch each other asymptotically as $T \rightarrow T_p$
- liquid-gas transition in water: max in isobaric heat capacity C_p, isothermal compressibility, isobaric heat expansion, etc
- DYNAMIC crossover arises from crossing the Widom line! water: Xu et al, PNAS 2005, Simeoni et al Nat Phys 2010

Link to Mott transition up to optimal doping

Doping dependence of critical point as a function of U

Pseudogap T^* along the Widom line

Rapid change also in dynamical quantities

Compare a few results for cuprates

Caveats: U not large enough t'=0

Khosaka et al. Science 315, 1380 (2007);

Spin susceptibility

Spin susceptibility

Julien et al. PRL 76, 4238 (1996)

What is the minimal model?

H. Alloul arXiv:1302.3473 C.R. Académie des Sciences, (2014)

Fig 1 Spin contribution K_s to the ⁸⁹Y NMR Knight shift [11] for YBCO_{6.6} permit to define the PG onset T^* . Here K_s is reduced by a factor two at $T \sim T^*/2$. The sharp drop of the SC fluctuation conductivity (SCF) is illustrated (left scale) [23]. We report as well the range over which a Kerr signal is detected [28], and that for which a CDW is evidenced in high fields from NMR quadrupole effects [33] and ultrasound velocity data [30]. (See text).

C-axis resistivity

Phys. Rev.B 50, 6534 (1994).

Mott-Ioffe-Regel limit

X. Deng, J.j Mravlje, R. Zitko, M. Ferrero, G. Kotliar, and A. Georges PRL 110, 086401 (2013)

Plaquette eigenstates

Pseudogap along the Widom line T_W

Summary: normal state

- Signatures of Mott physics extend way beyond half-filling
- Pseudogap is a phase
- Pseudogap *T** controlled by a Widom line and its precursor
- High compressibility (stripes?)

Organizing principle

- - Is the pseudogap (PG) a crossover or a phase transition ?
- Relation between CDW and the PG?
- - Why CDW peaked at 12% doping ?
- Origin of nematicity ?
- Why superconducting ?
- Why a dome of SC ?
- Does a one-band model capture the key physics ?
- AFM QCP important?
- Lessons from other SC?

Anisotropy (nematicity)

Normal state and large anisotropy in an *orthorhombic* crystal

No spontaneous tendency to nematicity in tetragonal crystal

SHERBROOKE

Underdoped metal very sensitive to anisotropy

Okamoto, Sénéchal, Civelli, AMST Phys. Rev. B **82**, 180511R 2010

Satoshi Okamoto

D. Fournier et al. Nature Physics (Marcello Civelli

At finite temperature anisotropy in Z

FIG. 3. (Color online) Color map of the anisotropic ratio of the quasiparticle weight σ_Z over the temperature-doping plane, for U = 6t. The solid blue curve indicates the pseudogap temperature $T^*(\delta)$ which is obtained as the temperature at which the uniform magnetic susceptibility $\chi_m[q = (0,0),T]$ has a maximum.

Su, Maier, PRB 84, 220506(R) (2011)

U = 6t, DCA, 4x4

An emergent phenomenon in CDMFT

- - Is the pseudogap (PG) a crossover or a phase transition ?
- Relation between CDW and the PG?
- - Why CDW peaked at 12% doping ?
- Origin of nematicity ?
- Why superconducting ?
- Why a dome of SC ?
- Does a one-band model capture the key physics ?
- AFM QCP important?
- Lessons from other SC?

d-wave superconductivity

High Tc are d-wave (interference)

Wollman et al. PRL 1993

Tsuei Kirtley, Rev. Mod. Phys. 2000

d-wave superconductivity

• Weak coupling

- C. J. Halboth and W. Metzner, Phys. Rev. Lett. 85, 5162 (2000).
- B. Kyung, J.-S. Landry, and A. M. S. Tremblay, Phys. Rev. B 68, 174502 (2003).
- C. Bourbonnais and A. Sedeki, Physical Review B 80, 085105 (2009).
- D. J. Scalapino, Physica C: Superconductivity 470, Supplement 1, S1 (2010), ISSN 0921-4534,
 proceedings of the 9th International Conference on Materials and Mech anisms of Superconductivity.

• Renormalized Mean-Field Theory

- P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, Journal of Physics: Condensed Matter 16, R755 (2004).
- K.-Y. Yang, T. M. Rice, and F.-C. Zhang, Phys. Rev. B 73, 174501 (2006).

• Slave particles

- P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).
- M. Imada, Y. Yamaji, S. Sakai, and Y. Motome, Annalen der Physik 523, 629 (2011)

• Variational approaches

- T. Giamarchi and C. Lhuillier, Phys. Rev. B 43, 12943 (1991).
- A. Paramekanti, M. Randeria, and N. Trivedi, Phys. Rev. B 70, 054504 (2004).

Divergence of d-wave: finite size study

DCA, U=4

T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent, and J. B. White PRL **95**, 237001 (2005)

CDMFT global phase diagram

Kancharla, Kyung, Civelli, Sénéchal, Kotliar AMST Phys. Rev. B (2008) AND Capone, Kotliar PRL (2006)

Armitage, Fournier, Greene, RMP (2009)

Giovanni Sordi

Patrick Sémon

Kristjan Haule

Finite T phase diagram Superconductivity t'=0

Sordi et al. PRL 108, 216401 (2012)

Phase diagram for U = 6.2 t

Giovanni Sordi

G. Sordi et al. Phys. Rev. Lett. 108, 216401/1-6 (2012) P. Sémon, G. Sordi, A.-M.S.T., Phys. Rev. B **89**, 165113/1-6 (2014)

Order parameter (color) and T_c

L. Fratino, G. Sordi (unpublished)

Lorenzo Fratino

T_c vs T_{max order parameter}

L. Fratino, G. Sordi (unpublished)

U=7, $T_W vs T_c vs T_{max order parameter}$

RSITÉ DE RBROOKE

Meaning of T_c^d

• Local pair formation

K. K. Gomes, A. N. Pasupathy, A. Pushp, S. Ono, Y. Ando, and A. Yazdani, Nature **447**, 569 (2007)

Meaning of T_c^d : Local pair formation

A. Pushp, Parker, ... A. Yazdani, Science **364**, 1689 (2009)

However, our measurements demonstrate that the nodal gap does not change with reduced doping. The pairing strength does not get weaker or stronger as the Mott insulator is approached; rather, it saturates.

Fluctuating region

Infrared response

Dubroka et al. PRL 106, 047006 (2011)

Tpair

Kondo, Takeshi, et al. Kaminski Nature Physics **2011**, *7*, 21-25

Magnetoresistance, LSCO Fluctuating vortices

Patrick M. Rourke, et al. Hussey Nature Physics 7, 455–458 (2011)

Giant proximity effect

Figure 6 | Depth profile of the local field at different temperatures. The

Actual T_c in underdoped

• Quantum and classical phase fluctuations

- V. J. Emery and S. A. Kivelson, Phys. Rev. Lett. 74, 3253 (1995).
- V. J. Emery and S. A. Kivelson, Nature **374**, 474 (1995).
- D. Podolsky, S. Raghu, and A. Vishwanath, Phys. Rev. Lett. 99, 117004 (2007).
- Z. Tesanovic, Nat Phys **4**, 408 (2008).

• Magnitude fluctuations

– I. Ussishkin, S. L. Sondhi, and D. A. Huse, Phys. Rev. Lett. **89**, 287001 (2002).

• Competing order

 E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie, Annual Review of Condensed Matter Physics 1, 153 (2010).

• Disorder

- F. Rullier-Albenque, H. Alloul, F. Balakirev, and C. Proust, EPL (Europhysics Letters) 81, 37008 (2008).
- H. Alloul, J. Bobro, M. Gabay, and P. J. Hirschfeld, Rev. Mod. Phys. 81, 45 (2009).

Larger clusters

- In 2x2 T_c vanishes extremely close to half-filling. In larger cluster, earlier.
- Local pairs in underdoped (2x2)

8 site DCA, *U*=6.5*t*

8 site DCA, U=6t

Gull Parcollet Millis, PRL **110**, 216405 (2013)

Fate of the first order transition in SC state

G. Sordi et al. Phys. Rev. Lett. 108, 216401/1-6 (2012)

Summary

- Below the dome, not QCP (but Mott)
- Maximum near Widom line
- T^* different from $T_c^{\ d}$
- First-order transition destroyed (but traces in the dynamics)
- Actual T_c in underdoped
 - Competing order
 - Long wavelength fluctuations (see O.P.)

Organizing principle

- - Is the pseudogap (PG) a crossover or a phase transition ?
- Relation between CDW and the PG?
- - Why CDW peaked at 12% doping ?
- Origin of nematicity ?
- Why a dome of SC ?
- Why superconducting ?
- Does a one-band model capture the key physics ?
- AFM QCP important?
- Lessons from other SC?

Bio break

Superconductivity

— -p'

#1 Cooper pair, #2 Phase coherence

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*}$$

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \left(\langle \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \rangle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} + \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \langle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} \rangle \right)$$

$$|\mathrm{BCS}(\theta)\rangle = \dots + e^{iN\theta}|N\rangle + e^{i(N+2)\theta}|N+2\rangle + \dots$$

Giovanni Sordi

Patrick Sémon

Superfluid stiffness T = 0

8 site cluster DCA U = 6t

FIG. 8. Superfluid stiffness ρ_s determined in the superconducting state at T = t/60 from Eq. 15, as a function of doping.

E. Gull, A.J. Millis, Phys. Rev. B **88**, 075127 (2013)

c-axis Superfluid stiffness U = 9t, T=1/100

c-axis Superfluid stiffness U = 9t, T=1/100

Sordi, Sémon, unpublished

Compare with number of cariers

Peets et al. PRL 2009, Phillips and Jarrell, PRL 2010

in tradici

532

Superfluid stiffness

0.060

Lorenzo Fratino

Giovanni Sordi

Condensation energy

Condensation energy

Th. A. Maier, M. Jarrell, A. Macridin, and C. Slezak PRL **92**, 027005 (2004)

Condensation energy

Experiments: N. Bontemps et al. Annals of Physics 321 (2006) 1547–1558

U = 6t, T = 1/60, 8 sites - DCA

E. Gull, A. Millis, PRB **86**, 241106(R) (2012) K. Haule, G. Kotliar EPL, 77 (2007) 27007

Superconductivity in general

Analog to weakly and strongly correlated antiferromagnets

Cartoon « BCS » weak-correlation picture

$$\Delta_{\mathbf{p}} = -\frac{1}{2V} \sum_{\mathbf{p}'} U(\mathbf{p} - \mathbf{p}') \frac{\Delta_{\mathbf{p}'}}{E_{\mathbf{p}'}} \left(1 - 2n\left(E_{\mathbf{p}'}\right)\right)$$

p
Béal–Monod, Bourbonnais, Emery P.R. B. 34, 7716 (1986).
D. J. Scalapino, E. Loh, Jr., and J. E. Hirsch

Exchange of spin waves? Kohn-Luttinger

 T_c with pressure

P.R. B **34**, 8190-8192 (1986). Kohn, Luttinger, P.R.L. **15**, 524 (1965).

P.W. Anderson Science 317, 1705 (2007)

Detailed calculations

Bulut, Scalapino, White, PRB 47, 6157 (1993) Maier, Jarrell, Scalapino PRL 96, 047005 (2006) $\lambda_{\alpha}\phi_{\alpha}(p) = -\frac{T}{N} \sum \Gamma_{I}(p|p')G_{\uparrow}(p')G_{\downarrow}(-p')\phi_{\alpha}(p')$ 18-0-00-0 0. 0.04 0.8 0.02 DCA, *U*=6*t*, *N* = 12 and 16 sites 0.6 0.05 0.1 0.15 0.2 \prec $\odot - \circ N_{1} = 12$ magnetic $q = (\pi, \pi)$ 0.4 $U = \delta t$, the « glue » approximation $\sim \sim N_{c}=16$ magnetic q=(π,π) $\Lambda \rightarrow N_{a}=12$ charge q=(0,0) $\blacktriangle \neg N_a = 16$ charge q=(0,0) 0.2 does not work so well □ N_a=12 d-wave pairing N₂=16 d-wave pairing E. Khatami, A. Macridin, and M. Jarrell 0 0.2 0 0.10.3 0.4 Phys. Rev. B 80, 172505 (2009) т S.-X. Yang, H. Fotso, ... J. Moreno, J. Zaanen, and M. Jarrell PRL 106, 047004 (2011)

A cartoon strong correlation picture

$$J \sum_{\langle i,j \rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} = J \sum_{\langle i,j \rangle} \left(\frac{1}{2} c_{i}^{\dagger} \vec{\sigma} c_{i} \right) \cdot \left(\frac{1}{2} c_{j}^{\dagger} \vec{\sigma} c_{j} \right)$$
$$d = \langle \hat{d} \rangle = 1/N \sum_{\vec{k}} (\cos k_{x} - \cos k_{y}) \langle c_{\vec{k},\uparrow} c_{-\vec{k},\downarrow} \rangle$$
$$H_{MF} = \sum_{\vec{k},\sigma} \varepsilon(\vec{k}) c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma} - 4Jm\hat{m} - Jd(\hat{d} + \hat{d}^{\dagger}) + F_{0}$$

Pitaevskii Brückner:

Pair state orthogonal to repulsive core of Coulomb interaction

P.W. Anderson Science Miyake, Schmitt–Rink, and Varma 317, 1705 (2007)
 P.R. B 34, 6554-6556 (1986)
 More sophisticated Slave Boson: Kotliar Liu PRB 1988 SHERBROOKE

d-wave in mean-field

Miyake, Schmitt–Rink et Varma, PRB **34**, 6554-6556 (1986) Anderson, Baskaran, Zou et Hsu, PRL **58**, 26 (1987)

P.W. Anderson Raising the question

D.J. Scalapino

Is There Glue in Cuprate Superconductors? Philip W. Anderson Science 316, 1705 (2007); DOI: 10.1126/science.1140970

Is There Glue in Cuprate Superconductors?

Philip W. Anderson

Many theories about electron pairing in cuprate superconductors may be on the wrong track.

Science e-letter, 5 and 10 Dec. 2007

Retardation

$$V^{eff}_{\acute{e}l-ph}(\vec{q},\omega) = \frac{e^2}{4\pi\varepsilon_0(q^2 + k_{TF}^2)} \left[1 + \frac{\omega_{ph}^2(\vec{q})}{\omega^2 - \omega_{ph}^2(\vec{q})} \right]$$

"We have a mammoth and an elephant in our refrigerator do we care much if there is also a mouse?"

Im Σ_{an} and electron-phonon in Pb

Maier, Poilblanc, Scalapino, PRL (2008)

The glue

The glue and neutrons

FIG. 3 (color online). **Q**-integrated dynamic structure factor $S(\omega)$ which is derived from the wide-*H* integrated profiles for LBCO 1/8 (squares), LSCO x = 0.25 (diamonds; filled for $E_i = 140 \text{ meV}$, open for $E_i = 80 \text{ meV}$), and x = 0.30 (filled circles) plotted over $S(\omega)$ for LBCO 1/8 (open circles) from [2]. The solid lines following data of LSCO x = 0.25 and 0.30 are guides to the eyes.

Wakimoto ... Birgeneau PRL (2007); PRL (2004)

The glue in CDMFT and DCA

Th. Maier, D. Poilblanc, D.J. Scalapino, PRL (2008)
M. Civelli, PRL 103, 136402 (2009)
M. Civelli PRB 79, 195113 (2009)
E. Gull, A. J. Millis PRB 90, 041110(R) (2014)
S. Sakai, M. Civelli, M. Imada arXiv:1411.4365

Dome vs Mott (CDMFT)

Strength of pairing: cuprates

Frequencies important for pairing

Bumsoo Kyung

g David Sénéchal

Anomalous Green function

 $\left[\mathcal{F}_{an}(t)\right]_{lm} = -i\theta(t)\left\langle \left\{ \hat{c}_{l\uparrow}(t), \hat{c}_{m\downarrow}(0) \right\} \right\rangle_{\mathcal{H}_{AIM}}$

Anomalous spectral function

$$[\mathcal{A}_{an}(\omega)]_{lm} = -\frac{1}{\pi} \operatorname{Im} [\mathcal{F}_{an}(\omega)]_{lm}$$

Cumulative order parameter:

$$I_{\mathcal{F}}(\omega) = -\int_{0}^{\omega} \frac{\mathrm{d}\omega'}{\pi} \operatorname{Im} \left[\mathcal{F}_{an}(\omega')\right]_{lm}$$
$$I_{\mathcal{F}}(\omega) \xrightarrow[\omega \to +\infty]{} \langle \hat{c}_{l\uparrow} \hat{c}_{m\downarrow} \rangle_{\mathcal{H}_{AIM}}$$

Resilience to near-neighbor repulsion V (Scalapino)

$$\hat{\mathcal{H}}_{Hubbard} = -\sum_{\langle i,j \rangle_{1,2,3}} \left(t_{ij} \, \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + c.h \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} + V \sum_{\langle i,j \rangle} \hat{n}_{i} \hat{n}_{j} - \mu \sum_{i\sigma} \hat{n}_{i\sigma}$$

YBa₂Cu₃O₇: t = 1 t' = -0.3 t'' = 0.2

We expect superconductivity to disappear when:

 $V > \frac{U^2}{W} \qquad \text{In weakly correlated case} \qquad V > J \qquad \frac{\text{In mean-field strongly}}{\text{correlated case}} \\ V > J \qquad \frac{V > J}{\text{correlated case}} \\ V = 400 \text{ meV} \\ J = 130 \text{ meV} \\ U_c = V_c / [1 + N(0)V_c \ln(E_F/\omega_c)] \qquad \text{Anderson-Morel} \end{cases}$

S. Onari, R. Arita, K. Kuroki et H. Aoki, PRB 70, 094523 (2004)

S. Raghu, E. Berg, A. V. Chubukov et S. A. Kivelson, PRB **85**, 024516 (2012) S. Sorella, et al. Phys. Rev. Lett. 88, 117002 (2002)

Resilience to near-neighbor repulsion

David Sénéchal

Alexandre Day

Sénéchal, Day, Bouliane, AMST PRB 87, 075123 (2013)

V also increases J

Binding aspects of V

$$J = \frac{4t^2}{U - V}$$

J increases with V explaining better pairing at low frequency

But V also induces more repulsion at high frequency, explaining the negative impact at high frequency on binding

Two gaps in underdoped regime of cuprates

Le Tacon et al. Nature Physics 2, 537 - 543 (2006)

Sakai et al. PRL 111, 107001 (2013)

. . . .

David Sénéchal

Alexandre Day

Vincent Bouliane

Sénéchal, Day, Bouliane, AMST PRB 87, 075123 (2013)

Superconducting gap in STM

Evolution of SC gap and pseudogap with *n*

SHERBROOKE

Local moment and Mott transition

Effect of disorder

Alexandre Prémont Foley

David Sénéchal

Simon Verret

unpublished

Summary

- There is retardation
- Strongly and weakly correlated SC differ
 - Penetration depth
 - Resilience to V

Organizing principle

- Is the pseudogap (PG) a crossover or a phase transition ?
- Relation between CDW and the PG ?
- Why CDW peaked at 12% doping ?
- Origin of nematicity ?
- Why a dome of SC ?
- Why superconducting ?
- Does a one-band model capture the key physics ?
- AFM QCP important?
- Lessons from other SC?

Main collaborators

Giovanni Sordi

David Sénéchal Kristjan Haule

Bumsoo Kyung

Alexandre Day

Vincent Bouliane

Gabriel Kotliar SHERBROOKE

Patrick Sémon

Lorenzo Fratino

Simon Verret

Jyotirmoy Roy

Marcello Civelli Sarma Kancharla Massimo Capone

A.-M.S. Tremblay "Strongly correlated superconductivity" Chapt. 10 : Emergent Phenomena in Correlated Matter Modeling and Simulation, Vol. 3, E. Pavarini, E. Koch, and U. Schollwöck (eds.) Verlag des Forschungszentrum Jülich, 2013