CHAPTER 1

Hartree-Fock Hamiltonians for the chiral 2DEGs in
graphene and bilayer graphene

1.1 Basic notions

e Lattice structure: honeycomb lattice of C atoms (triangular lattice with 2 C per unit cell: A and B)

The crystal structure of graphene.

e Primitive vectors:

a; = a(l —£>, (1.1)

as = a(1,0). (1.2)

with @ = /3¢ where ¢ = 1.42 A is the spacing between carbons atoms.
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e Nearest-neighbors:

5 = a<
5y — a<—%,ﬁ>, (1.4)
5y — a< .

e spo hybridization, 0 and 7= bonds

e Reciprocal lattice:

Reciprocal lattice of graphene.



§1.1 Basic notions

e Valleys:

K’

First Brillouin zone of graphene.

e Band structure: eith 2 C’s per unit cell, we have 8 bandes: 6 ¢ bands and 2 7 bands:

\/
|

Enelrgy (eV)

=
=
mll!ll I R

=

(5,5 (7,1 (8,0)

e Fermi level: valence of C is 4: 3 ¢ and 1 7 bands are occupied in undoped graphene.
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1.2 Tight-binding hamiltonian for the 7 bands

e Hamiltonian for the 7 bands:

——tz<ab +hc> (1.8)

(4,9)
with t 2.8 eV and t/ ~ 0.1 eV, t”" = 0.07 eV.

e Fourier transform to ay and by operators:

_ ik-Rj A
a; = —Z A ak, (1.9)
VN 4
by = —Z Ranpy, (1.10)
VN 4
with
{ak,a;r(,} = {bk,bL,} = 5k,k’~ (1.11)
e Hamiltonian: A
0 Ak
H= Xk: al (A*(k) 0 )(bk>’ (1.12)
where - s
=ty e*? (1.13)
1]
The TB Hamiltonian is diagonalized to give:
H= ZE Ckcck—i—ZE ) el o (1.14)

e Band structure:

t
O
=

I

++v/A (k) A* (k) = +¢, |1+ 4cos? (%) + 4 cos <k2 a> cos <?kya>, (1.15)

By(k) = —/AR A (K) = —t,|1+4cos? (’%)Hcos(%a)cos (?WL) (1.16)
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1.3 Continuum approximation

We consider that the doping is small so that the Fermi level is near energy £ = 0 and we can use the band
structure around the valley points K. Expanding to linear order in p, we get the linear dispersion:

E (p) = thur|p|. (1.17)
where the Fermi velocity is
vp = % ~ 1 x 10%m/s. (1.18)

For the Hamiltonians (basis A, B)

0 pe—w
Hi(p) = -—vr ( peif 0 ) = —VUr0O ' P, (1.19)
0 pew y
o) = e (00 Py ) = ruratop. (1.20)
where:
tan @ = 22 (1.21)
Dz

The eigenspinors give the wave function on site A and B. For the K and K’ valleys and the conduction
(C) and valence (B) bands:

1 e—10(p)/2 1 e—10(p)/2
U (p) = 7 ( _if(p)/2 ) by (p) = 7 ( (i0(p)/2 ) ; (1.22)
o L1 et oo 1 £i0(p)/2
c p) = NACRE Wy (p) = NAUREISNE (1.23)
If we use the basis (4, B) for K and (B, A) for K’, then: ({ = +1 for K and £ = —1 for K')
0 e—i@
Her (p) = —€up < pe® P 0 > = —§vpo - p (1.24)
and we have for the sublattice spinors
p | [ eitp)/2
®) = 2= s (1.2
| [ geio®)/2
K _
#® = o= (S ) (1.26)

1.4 Helicity

A general spin 1/2 spinor is given by

_ ¥ i0/2 PN +i6/2|
) cos(Q)e H—>+sm(2)e |-), (1.27)
_ — ain (P —i0/2 4y _ PN +ib/2)_
=) 5111(2)6 |+) cos(2)e |—). (1.28)
For p =7/2:
_ i —i6/2 +i0/2 | _
Ha = o5 [ ) (1.29)
Lo i
Fu = [ et ) (1.30)
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With the correspondence

4 = 1),
B) — |,
we have
WE®) = s [08 ®) =),
[ ) = s |9 ) = )
where

u =p

The sublattice spinor is in (or opposite) the direction of the electronic momentum. For K’ :

The helicity is defined as the projection of the pseudospin onto the direction of propagation
n=o0--—.
p|
In graphene
Hk (p) = —vro -p=—vr|pn

and so o
e = 2P 4 by and +1 (v.b)
—vr |p|
Nyr = Hi (p) =41 (c.b.) and —1 (v.b.)
v |p|

(in this picture, K and K’ are inverted w.r.t. my definitions)

energy
[=1

(A=-) n=- n=+

E@E=4 EE=o

momentum

(1.36)

(1.37)

(1.38)

(1.39)
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e The chirality is equivalent to the helicity only for masless particle.

e The eigenstates of the Dirac Hamiltonian are also eigenstates of the chirality operator and so chirality
is a good quantum number. It is conserved. Chirality is a quantum number that is conserved in elastic
scattering processes induced by impurity potentials Vi, = V (r)I (I is the unit matrix) that vary
smoothly on the lattice scale. This type of potential does not permit inter-valley scattering and so & is
fixed and A = &n is conserved. This effect gives rise to the absence of backscattering in graphene and
is at the origin of the Klein tunneling (perfect transmission through a high potential barrier at normal
incidence).

e Note that chirality is a good number only in the vicinity of the Dirac points. If we include higher-order
corrections, it is no longer conserved.

e The rotation operator by an angle « about an axis u for a spin 1/2 particle is given by
Ry (@) = e7"5% = cos (%) — {0 - usin (%) . (1.40)

We see that a rotation in the spin space by a = 27 gives a phase factor of 7. This means, in our
case, that if the particule circles around the Dirac cone, the vector p turns by 27 and so does the
sublattice pseudospin. The eigenstate thus acquires a —1 sign.

e The chiral nature of low-energy electrons in graphene places an additional constraint on their scatter-
ing properties. If a given potential doesn’t break the A-B symmetry, then it is unable to influence the
pseudospin degree of freedom which must, therefore, be conserved upon scattering. Considering only
the pseudospin part of the chiral wave function ¢, the probability to scatter in a direction 6 = 0,

where 6 = 0 is the forwards direction, is proportional to w (6) = |[(¢ (8) |t (O)>|2 For monolayer
graphene, w () = cos? (#/2). This is anisotropic, and displays an absence of backscattering w () = 0]:
scattering into a state with opposite momentum is prohibited because it requires a reversal of the
pseudospin. Such conservation of pseudospin is at the heart of anisotropic scattering at potential bar-
riers in graphene monolayers, known as Klein tunneling.
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2.7.2 Chirality factor and the absence of backscattering

Here, we discuss an important consequence of the pseudo-
spin, first discovered by Ando and coworkers in the context
of carbon nanotubes [25,26]. Consider a massless Dirac
electron, which 1s incident on an impurity whose potential
is smooth on the lattice scale such that intervalley scat-
tering is suppressed and the problem can be deseribed
within a single valley model (see Sect. 2.3). The impu-
rity potential is therefore Vigg(r) = U(r)i [25,26]. For
simplicity, though the argument can be made much more
general (see [25,26] and the next paragraph), we will com-
pute the scattering probability using the first order Born
approximation. It is given by

P(6) o |(k',a'|U(r)i]k, o) | (21)

where |k, a) and |[k’, ') are the initial and the final states
respectively and @ i1s the angle between the final and mmitial
wavevectors. As the collision is elastic &' = k and o’ = .
Therefore the only freedom in the final state 1= the angle
@ = dpr — ¢r that k' makes with k. We are now in a
position to compute the matrix element:

1+e

(K, o |U(r)i|k,a) = U(k' — k) (22)

where [7(g) = [ d®rU(r)exp(ig - v) is the Fourier trans-
form of the potential U7(r). Note that the transferred mo-
mentum is ¢ = 2k sin(f/2). Therefore, the scattering prob-
ability reads:

I21+mﬁﬁ‘

P(6) |U(q:||*cos"- U(q) (23)
The first term |U(q)|? is the usunl result of the Born ap-
proximation and the second cos? § ¥ 1s due to the sublattice
pseudo-spin and 1s called the “chirality factor™. The latter
is just the square of the scalar product between the incom-
ing and outgoing bispinors: (1,e%*) /v and (1, e"» ) /1/2.
The effect of the chirality factor is quite dramatic as it kills
backscattering (k' = —k):

P = ) x |(?{q]|”cas‘*’% —Owithg=2k.  (24)
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An intuitive explanation of this absence of backscatter-
ing 15 the following: if the electron tries to backscatter

k'’ = —k it also has to reverse its sublattice pseudo-spin
o — —0 as the pseudo-spin direction is tied to that of
the momentum (indeed remember that away from the
impurity Hyyn, = Kk - o). However, the potential U{r:li
does not act in sublattice space (it is the unit matrix)
and can therefore not reverse the pseudo-spin. Therefore
backscattering is impossible. This has profound physical
consequences on the transport properties of massless Dirac
electrons, such as weak antilocalization [27-29|.

(From P.E. Allain and J. N. Fuchs: Klein tunneling in graphene, Eur. Phys. J. B. 83, 201 (2011)). (Note
: « is the band index in this text.)

1.5 Family of chiral 2DEGs

e In graphene (monolayer) H¢ (p) can be written as

J
H{(J) = ¢ hopp, <p£) [cos (JO) oy +sin (JO) o], (1.41)

c

with J = 1 where J is the chirality index. E (p) ~ p.

e In Bernal-stacked bilayer graphene, a low-energy Hamiltonian (E << =) can be constructed where
Ag, By are the low-energy sites. The minimal Hamiltonian is given by H 5(2) ie. J=2and E (p) ~ p°.

Aq

Bl A1
- < . > (1.42)

By
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e In ABC-stacked trilayer graphene, the effective two-band model involves the low-energy sites A;, Bs
and J = 3 i.e. E(p) ~ p>.

Ay Ay
5 |- < B ) (1.43)
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ABC

1.6 Example of the importance of the spinor structure

In second-quantization, we define the field operators as
1 , e—i0(p)/2
Ter () = —= Y Y e ( wors ) ke (1.44)
V25 45 ge

The spinor structure modifies properties of the C2DEG wrt to the ordinary 2DEG. For example:

e Non-chiral 2DEG: retarded density response function is given by

f (Bx—q) = f (Ex)

1
R
=2— 1.4
XHF,nn (q,OU) hS - w_i_z(s_(E(k)_E(k_q))/ﬁ? ( 5)
e Chiral 2DEG:
1
B (qw) = o Z Zk: (1 + 55" cos (O — Ox_q))) (1.46)
« f (Es,k—q) B f (Es/,k)
w+id — (Ey (k) — FEs (k—q)) /h
where s = £1 for the conduction and valence bands. This affects the dielectric function
2me?
€ (qvw) =1- Xrlzzn (Q7w) . (147)

e Similar form factors appear in the conductivity response functions (and so in the calculation of the
optical properties).

1.7 C2DEGs in a magnetic field

Peierls substitution
p—P=p+eA/hc (1.48)
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where V x A = B =B,z with B, > 0. We get

H:_UF< 0 P, —iP,

P, +iP, 0

with the commutation relation

12
Pwa Py = _Z€_2’
where
he
=
eB,
is the magnetic length.
1.8 Landau levels and eigenfunctions
Ladder operators
a = £ (P, —iFPy)
- \/Qﬁ x Yy)
4 ,
CLT = _Qﬁ (Px + ZPy) s
obeying the commutation relation
[a, aT] =1
The Hamiltonian is now:
\/iﬁvp 0 a
o= (05

Landau gauge A = Bzy. Solutions are

with

Fig. 6 (Left) Landau levels for Schrodinger electrons with two parabolic bands
touching each other 3t zero energy. (Right) Landau lavels for Dirac electrons.

D(E) - "D(E)

(1.49)

(1.50)

(1.51)

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)
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Band struciure Dansity of states Landau levels
E
standard 20
gami-
candwclar:
(@)
Graghens: E
(d)

and

The functions

and

Vil
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(1.57)

(1.58)

(1.59)

(1.60)

are the usual Landau gauge wave functions for an ordinary 2DEG with ¢, ;. (z) = ¢, (z — k€?) , the wave

functions of the harmonic oscillator in 1D.
For the K’ valley

For n=0

and

S5 L fin (X)
n (1) /2 ( —sgn (n) ihjn|—1 (r) )

For n = 0, valley and sublattice indices are equivalent.
e For graphene (monolayer)

sz—@( 0 a).

¢ at 0
Note that there is a Landau level n = 0 with energy £ =0

—@<3 g><h00(r)>:0<h00(r)>

n = 0 has degeneracy 2(spin) X 2 (valleys) X N, = 4N,,. The spinor for K’ is ( ho (r)

0
sublattice indices are equivalent.

(1.61)

(1.62)

(1.63)

(1.64)

(1.65)

) , valley and
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e For AB-bilayer graphene

Hy ~ 10 ( (a?)z ‘:)2 ) (1.66)

For the £ = 0 Landau level:

( (a?)2 %2 > < hoo(r) > :0;< (a?)2 %2 > ( hlo(r) ) =0 (1.67)

The two "orbitals" hg and hy are degenerate with £ = 0. The degeneracy is now 2 (spin) X 2 (valleys)

X 2 (orbitals) N, = 8N,,. For K', the spinors are < hlo(r) ) , ( hQO(r) ) and so valley and layer

indices are equivalent.

e For ABC-trilayer graphene

Hy = 1—(%( (a?)g . ) (1.68)

The n = 0 spinors are for K

( hoo(r) )( hlo(r) )( hgo(r) ) (1.69)

and the reversed for K’ so that valley and layer are equivalent. The three "orbitals" hg, hi, and ho
are degenerate with £ = 0. The degeneracy is now 2 (spin) X 2 (valleys) X 3 (orbitals) N, = 12N.,.

(c) (d)

A‘I B1 B1 A‘l
‘. F
f‘l f}" “\‘rls -f'1 {"’ ’:\\u}ra
F ... A: \.1 r'z-'lz: : B.2
Bz A: - "‘\ ' 1"’ -r’1
rB Wl f],
r
B, A,

e ctc. for ABCA, ABCBA,..
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1.9 Quantum Hall effects

- i3
_l—-l ;
]
=1 - ) 2 4 & EHID
-1 ._lI
-aL |
-4 -
g -5
1.10 Energies
e In-plane hopping between nearest-neighbors:
t=7v,=28¢eV, (1.70)
e Magnetic length:
2
(= L, (1.71)
B(Tesla)
e Gap betweenn=1andn=0:
E, = 3.2047 x1072VB eV (1.72)
= 382.33VBK
e Coulomb energy:
2 .624 1072vB
¢ _ BEAIXTE (1.73)
4 K
2.74
SEYENGR
K
e Zeeman energy:
gupB = 1.1577x107'B eV (1.74)

1.3434B K
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1.11 Field operators

Here we use the same basis (A, B) for the two valleys:

Ui (r) = Y e ™ (r|Kin, k) ki (1.75)
n,k
1 —iKor,—ik 0
= —LZe e y((p()(x—k’ﬁQ) )CK,O,k
— isgn (n) ¢, 1 (z — k€?)
+ iK e iky < |m| CKom
n;k P (z — kL?) famk
and
%% (I‘) = ZeilK * <I‘|K/ n, ]ﬂ> CK' n,k (176)
, 2
— —iK'-r —1ky ( %o (xo ke ) )CK’,O,k

—iKr o —iky Pln| (v — k) > ,
+n;£0,k \/me ‘ < —isgn (n) Plnj—-1 (a: _ ng) CK' k-

1.12  Spinor structure and selection rules

The spinor structure plays again an important role in the calculation of the optical conductivity. For example
e Non-chiral 2DEG:

1 2 1 —3
) PR R, (A <_i 1> - <’ ! ) R
h (w/we +10) 2h (w/we +19) | (w/we+10)+1  (w/we+1i6) —1 '

Absorption is at w. only.

e Chiral 2DEG:

2ie2v? <P (0)> - <P (O)>
a,f e A A a) A(ﬁ) n,n m,m 1
o (UJ) €2hw—|—25 7;1 n,m mmw_’_i(s_(Em_En)/h ( 78)
with

Aﬁfzn = i [Sgn (n) 6|n\—1,\m\ — sgn (m) 6|m|—1,\n\] ) (1‘79)
Agf{zn = sgn(n) 5‘7”71)‘,"” + sgn (m) 5‘m‘71"n|. (1.80)

Selection rule is given by:
In| £1=|m| (1.81)

For ex.: transitions 2 - 3,2 —-1,-2 —» —-1,-2— -3, -2 — 3, -2 — 1.
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1.13 Second-quantized Hamiltonian

If we put this expression in the first-quantized hamiltonian, we get the second quantized form

Hi = Z / dr¥l, (r) HU], (r) (1.82)

= \/_ﬁUFZZ {/dr (r|K;n, k)’ ((?T g)<rKn kﬁcKnchn/k/JrK K’

n,k n’ k'

K
= > Bl ek
Enk

For the Coulomb interaction

Z Z/dr/dr Ul )T )V (e—1) e, () T, (v), (1.83)

51 €a B

K-K')r

Terms that do not conserve the valley index involves rapidly oscillating integrands e* i . These terms

are very small and usually neglected. Thus:

Z Z/dr/dr W (UL )V (=) Wse, (1) Uag, (v), (1.84)

61,52 a,B
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Now, write
)= L5 21 )

V(r r)—SZ o , (1.85)

so that with )

2me

= ]..
V=" (1:86)
we have

U=33 Q> / dr / 'l ()l () e ) (1) o, (1) (1.87)

§1:82
which gives:

U= 55> Vi PP (1.88)

q cesng k.. 74£1a£2
< [ dr gm0 (el )
X /dr’ (€95 na, ka|r) eiar’ (r|€y;ms, k3)

T T
XC€17"1J€1 Ceyna ko C6ooma ks €61 na ks

The Coulomb interaction will depend on the matrix elements:

/dr <§;n’k|r> qu<r|§)n k>£ 54 (k+k )Z Zn n’( )6k,k’—(1y' (189)

1.14 Hartree-Fock approximation (monolayer graphene)

We approximate the Coulomb interaction by the Hartree-Fock pairings:

Ul ()W () e, () T, (r) — 2 <\1/§1 (r) T, (r)> vl () Ve, () (1.90)
) <‘I’§1 (r) U, (r')> vl () T, (r).

After some algebra ... (N = S/27(? is the Landau level degeneracy) and if we ignore Landau level mixing,
we get for the electrons in Landau level n :

H = Ny Y Enapytt(q=0) (1.91)
n,&,a
62 &0 '8¢
+Ng (@) DD Hu(@) (¥ (@) ot ¢ (—a)
a,B ¢ a
62 .l ’ "o
N (5) E T K @ (5 (@) o ).
a,B £,¢ a
where 1
_ i 7\ g2
oo a,&;8,¢' (q) = m Ze Lqo (k+k')eE 5k,k'+qyCLan,kcﬁ,E’,n,k’~ (1.92)
k,k’

The average values of these operators are the order parameters for the different broken-symmetry phases
of the C2DEG.

(pr*(q)) = populations (1.93)
<pzb7ﬁa (@)) = coherences (1.94)
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e Exemples of coherence

< pl /> = valley coherence, (1.95)
(pl’*y = spin coherence, (1.96)
<p”:0’”:1> = orbital coherence (bilayer and trilayer) (1.97)

The number of possible broken-symmetry states is large (uniform states, CDW states, SDW, PSDW,
crystals, etc.)

The Hartre and Fock interactions are defined by

ql
and N1
K - - i
xn@= (%) § SV BIE E e (1.99)
with 22 22
_ 1 _g242 242
= (@) =30 (D™ |2 (5 ) + 280 (5 )|+ dnae™ (1.99)
The Hartree-Fock energy of the C2DEG in a magnetic field is:
E 1
5 = ;;ann,cr,a (1.100)
1 [é€? alia 8¢
o (S ) SN Ha (@) (o€ (@) (P (~a))
2v \ k/
a,B &g a
L(e 0,88 (o) )|
—— (=)D Xu(a) ‘<pn’ o (q)>‘ :
2v \ Kl chie’a

Interactions Hy, (¢) — X, (¢) for n = 1,2, 3,4 (blue: normal 2DEG, violet C2DEG)

e H and X in n = 0 are identical to the normal 2DEG interactions
e The Fock and Hartree interactions are indepenent of spin and valley indices
e In this form, we can study uniform and well as non-uniform states of the C2DEG.

e For a uniform state,
<pz,§;a,£ (q= 0)> £0 (1.101)

and
H,(0)=0 (1.102)

(infinite terms are cancelled by the positive background). Also

SO3 |(prene (0)>‘2 =v. (1.103)

a,B &€

Thus
2

E 1 1 /e

The Fock term is constant. It follows that the ground states for v = 1,3 are spin polarized while the
ground states for v = 2,4 are spin unpolarized.
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ozl 1 0.2t .
0.0 0.0
-0.2 -0.2
-0.4 _0.4
—-06L L
1]
0.1 0.1
0.0 0.0
0.1 -0.1F
-0.2 -0.2F
—0.3 -D3E
-4 D4
-0.3
1]
FIGURE 1.1.

e For the spin polarized state, the energy is independent of how the electrons are distributed in the
two valleys. If we define a valley pseudospin, then at v =1 :

¥ = Bus
62
1 (1) ST @ 0 Ca ) (1.105)
62
o (5) S @IS, () (5. (@)
with
Jn (@) = —Xn (a), (1.106)
and
Ty (q) = 2Hy, (q) — Xn (q).- (1.107)
For the liquid state
5= Fuk =1 (5) X 0+ 2,0 (5) 8, O)F (1.108)

and so, because J, (0) < 0, the minimal energy is obtained when |S,, (0)| is maximized in any direc-
tion. The ground state is pseudo-ferromagnetic. We then expect a Goldstone mode with a quadratic
dispersion relation.

e (From R. Coté, J. -F. Jobidon, and H. A. Fertig, PRB 78, 085309 (2008).):
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05

Coherent Wigner crystal of electrons in graphene
v=0.2, N=0 (vectors = pseudospin for K K' points,
contours = guiding-center density)

S
SNwROBNDO

0.9
08

FIGURE 1.2.
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Pseudospin texture

WE

0199336
0149512
0099688
0049864
4E-05
-0.049724
-0.099608
-0.149432
-0.199256

Meron Crystal Density
nu=0. 60&%: 0
Graphene

W

0z
0145
0.1
0.0

-0.08
-0.1
-0.15
-0.2

Note: nu<1 so a meron coirespond to a hole in the density.

FIGURE 1.3.




