CHAPTER 1

Hartree-Fock Hamiltonians for the chiral 2DEGs in graphene and bilayer graphene

1.1 Basic notions

• Lattice structure: honeycomb lattice of C atoms (triangular lattice with 2 C per unit cell: A and B)

The crystal structure of graphene.

• Primitive vectors:

$$\mathbf{a}_1 = a\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right),\tag{1.1}$$

$$\mathbf{a}_2 = a(1,0). \tag{1.2}$$

with $a = \sqrt{3}c$ where c = 1.42 Å is the spacing between carbons atoms.

• Nearest-neighbors:

$$\boldsymbol{\delta}_1 = a\left(\frac{1}{2}, \frac{1}{2\sqrt{3}}\right), \tag{1.3}$$

$$\boldsymbol{\delta}_2 = a\left(-\frac{1}{2}, \frac{1}{2\sqrt{3}}\right), \tag{1.4}$$

$$\boldsymbol{\delta}_3 = a\left(0, -\frac{1}{\sqrt{3}}\right). \tag{1.5}$$

• sp_2 hybridization, σ and π bonds

• Reciprocal lattice:

Reciprocal lattice of graphene.

• Valleys:

$$\mathbf{K}' = \left(\frac{2}{3}, 0\right) \frac{2\pi}{a},\tag{1.6}$$

$$\mathbf{K} = \left(-\frac{2}{3}, 0\right) \frac{2\pi}{a}.$$
 (1.7)

First Brillouin zone of graphene.

• Band structure: eith 2 C's per unit cell, we have 8 bandes: 6 σ bands and 2 π bands:

• Fermi level: valence of C is 4: 3 σ and 1 π bands are occupied in undoped graphene.

1.2 Tight-binding hamiltonian for the π bands

• Hamiltonian for the π bands:

$$H = -t \sum_{\langle i,j \rangle} \left(a_i^{\dagger} b_j + h.c. \right), \tag{1.8}$$

with $t \approx 2.8$ eV and $t' \approx 0.1$ eV, $t'' \approx 0.07$ eV.

• Fourier transform to $a_{\mathbf{k}}$ and $b_{\mathbf{k}}$ operators:

$$a_j = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{R}_{j,A}} a_{\mathbf{k}}, \qquad (1.9)$$

$$b_j = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{R}_{j,B}} b_{\mathbf{k}}, \qquad (1.10)$$

with

$$\left\{a_{\mathbf{k}}, a_{\mathbf{k}'}^{\dagger}\right\} = \left\{b_{\mathbf{k}}, b_{\mathbf{k}'}^{\dagger}\right\} = \delta_{\mathbf{k}, \mathbf{k}'}.$$
(1.11)

• Hamiltonian:

$$H = \sum_{\mathbf{k}} \begin{pmatrix} a_{\mathbf{k}}^{\dagger} & b_{\mathbf{k}}^{\dagger} \end{pmatrix} \begin{pmatrix} 0 & \Lambda(\mathbf{k}) \\ \Lambda^{*}(\mathbf{k}) & 0 \end{pmatrix} \begin{pmatrix} a_{\mathbf{k}} \\ b_{\mathbf{k}} \end{pmatrix}, \qquad (1.12)$$

where

$$\Lambda\left(\mathbf{k}\right) = -t\sum_{\boldsymbol{\delta}} e^{i\mathbf{k}\cdot\boldsymbol{\delta}}.\tag{1.13}$$

The TB Hamiltonian is diagonalized to give:

$$H = \sum_{\mathbf{k}} E_c(\mathbf{k}) c^{\dagger}_{c,\mathbf{k}} c_{c,\mathbf{k}} + \sum_{\mathbf{k}} E_v(\mathbf{k}) c^{\dagger}_{v,\mathbf{k}} c_{v,\mathbf{k}}, \qquad (1.14)$$

• Band structure:

$$E_{c}(\mathbf{k}) = +\sqrt{\Lambda(\mathbf{k})\Lambda^{*}(\mathbf{k})} = +t\sqrt{1+4\cos^{2}\left(\frac{k_{x}a}{2}\right)+4\cos\left(\frac{k_{x}}{2}a\right)\cos\left(\frac{\sqrt{3}}{2}k_{y}a\right)}, \quad (1.15)$$

$$E_{v}(\mathbf{k}) = -\sqrt{\Lambda(\mathbf{k})\Lambda^{*}(\mathbf{k})} = -t\sqrt{1+4\cos^{2}\left(\frac{k_{x}a}{2}\right) + 4\cos\left(\frac{k_{x}}{2}a\right)\cos\left(\frac{\sqrt{3}}{2}k_{y}a\right)}.$$
 (1.16)

1.3 Continuum approximation

We consider that the doping is small so that the Fermi level is near energy E = 0 and we can use the band structure around the valley points K_{\pm} . Expanding to linear order in p, we get the linear dispersion:

$$E\left(\mathbf{p}\right) = \pm \hbar v_F \left|\mathbf{p}\right|. \tag{1.17}$$

where the Fermi velocity is

$$v_F = \frac{3ct}{2\hbar} \simeq 1 \times 10^6 \text{m/s.}$$
(1.18)

For the Hamiltonians (basis A, B)

$$H_K(\mathbf{p}) = -v_F \begin{pmatrix} 0 & p e^{-i\theta} \\ p e^{i\theta} & 0 \end{pmatrix} = -v_F \boldsymbol{\sigma} \cdot \mathbf{p}, \qquad (1.19)$$

$$H_{K'}(\mathbf{p}) = +v_F \begin{pmatrix} 0 & pe^{i\theta} \\ pe^{-i\theta} & 0 \end{pmatrix} = +v_F \boldsymbol{\sigma}^* \cdot \mathbf{p}, \qquad (1.20)$$

where:

$$\tan \theta = \frac{p_y}{p_x}.\tag{1.21}$$

The eigenspinors give the wave function on site A and B. For the K and K' valleys and the conduction (C) and valence (B) bands:

$$\psi_C^K(\mathbf{p}) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\theta(\mathbf{p})/2} \\ -e^{i\theta(\mathbf{p})/2} \end{pmatrix}, \psi_V^K(\mathbf{p}) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\theta(\mathbf{p})/2} \\ e^{i\theta(\mathbf{p})/2} \end{pmatrix},$$
(1.22)

$$\psi_C^{K'}(\mathbf{p}) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\theta(\mathbf{p})/2} \\ e^{-i\theta(\mathbf{p})/2} \end{pmatrix}, \psi_V^{K'}(\mathbf{p}) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\theta(\mathbf{p})/2} \\ -e^{-i\theta(\mathbf{p})/2} \end{pmatrix}.$$
 (1.23)

If we use the basis (A, B) for K and (B, A) for K', then: $(\xi = +1 \text{ for } K \text{ and } \xi = -1 \text{ for } K')$

$$H_{\xi K}(\mathbf{p}) = -\xi v_F \begin{pmatrix} 0 & p e^{-i\theta} \\ p e^{i\theta} & 0 \end{pmatrix} = -\xi v_F \boldsymbol{\sigma} \cdot \mathbf{p}$$
(1.24)

and we have for the ${\bf sublattice}\ {\rm spinors}$

$$\psi_C^{\xi K}(\mathbf{p}) = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{-i\theta(\mathbf{p})/2} \\ -\xi e^{i\theta(\mathbf{p})/2} \end{pmatrix}$$
(1.25)

$$\psi_V^{\xi K}(\mathbf{p}) = \frac{1}{\sqrt{2}} \begin{pmatrix} \xi e^{-i\theta(\mathbf{p})/2} \\ e^{i\theta(\mathbf{p})/2} \end{pmatrix}, \qquad (1.26)$$

1.4 Helicity

A general spin 1/2 spinor is given by

$$\left|+\right\rangle_{\mathbf{u}} = \cos\left(\frac{\varphi}{2}\right)e^{-i\theta/2}\left|+\right\rangle + \sin\left(\frac{\varphi}{2}\right)e^{+i\theta/2}\left|-\right\rangle, \qquad (1.27)$$

$$|-\rangle_{\mathbf{u}} = \sin\left(\frac{\varphi}{2}\right)e^{-i\theta/2}|+\rangle - \cos\left(\frac{\varphi}{2}\right)e^{+i\theta/2}|-\rangle.$$
(1.28)

For $\varphi = \pi/2$:

$$\left|+\right\rangle_{\mathbf{u}} = \frac{1}{\sqrt{2}} \left[e^{-i\theta/2} \left|+\right\rangle + e^{+i\theta/2} \left|-\right\rangle \right], \qquad (1.29)$$

$$|-\rangle_{\mathbf{u}} = \frac{1}{\sqrt{2}} \left[e^{-i\theta/2} |+\rangle - e^{+i\theta/2} |-\rangle \right].$$
(1.30)

With the correspondence

$$|A\rangle \quad \rightarrow \quad |+\rangle \,, \tag{1.31}$$

$$B\rangle \rightarrow |-\rangle,$$
 (1.32)

we have

$$\left|\psi_{C}^{K}\left(\mathbf{p}\right)\right\rangle = \left|-\right\rangle_{\mathbf{u}}, \left|\psi_{V}^{K}\left(\mathbf{p}\right)\right\rangle = \left|+\right\rangle_{\mathbf{u}},$$

$$(1.33)$$

$$\left|\psi_{C}^{K'}\left(\mathbf{p}\right)\right\rangle = \left|+\right\rangle_{\mathbf{u}}, \left|\psi_{V}^{K'}\left(\mathbf{p}\right)\right\rangle = \left|-\right\rangle_{\mathbf{u}},$$
(1.34)

where

$$\mathbf{u} = \widehat{\mathbf{p}} \tag{1.35}$$

The sublattice spinor is in (or opposite) the direction of the electronic momentum. For K^\prime :

The helicity is defined as the projection of the pseudospin onto the direction of propagation

$$\eta = \boldsymbol{\sigma} \cdot \frac{\mathbf{p}}{|\mathbf{p}|}.\tag{1.36}$$

In graphene

$$H_{K}(\mathbf{p}) = -v_{F}\boldsymbol{\sigma}\cdot\mathbf{p} = -v_{F}|\mathbf{p}|\eta \qquad (1.37)$$

and so

$$\eta_K = \frac{H_K(\mathbf{p})}{-v_F |\mathbf{p}|} = -1 \text{ (c.b.) and } + 1 \text{ (v.b.)}$$
 (1.38)

$$\eta_{K'} = \frac{H_{K'}(\mathbf{p})}{v_F |\mathbf{p}|} = +1 \text{ (c.b.) and } -1 \text{ (v.b.)}$$
(1.39)

(in this picture, K and K' are inverted w.r.t. my definitions)

- The chirality is equivalent to the helicity only for masless particle.
- The eigenstates of the Dirac Hamiltonian are also eigenstates of the chirality operator and so chirality is a good quantum number. It is conserved. Chirality is a quantum number that is conserved in elastic scattering processes induced by impurity potentials $V_{imp} = V(\mathbf{r}) I$ (I is the unit matrix) that vary smoothly on the lattice scale. This type of potential does not permit inter-valley scattering and so ξ is fixed and $\lambda = \xi \eta$ is conserved. This effect gives rise to the absence of backscattering in graphene and is at the origin of the Klein tunneling (perfect transmission through a high potential barrier at normal incidence).
- Note that chirality is a good number only in the vicinity of the Dirac points. If we include higher-order corrections, it is no longer conserved.
- The rotation operator by an angle α about an axis **u** for a spin 1/2 particle is given by

$$R_{\mathbf{u}}(\alpha) = e^{-i\alpha\frac{\boldsymbol{\sigma}}{2}\cdot\mathbf{u}} = \cos\left(\frac{\alpha}{2}\right) - i\boldsymbol{\sigma}\cdot\mathbf{u}\sin\left(\frac{\alpha}{2}\right).$$
(1.40)

We see that a rotation in the spin space by $\alpha = 2\pi$ gives a phase factor of π . This means, in our case, that if the particule circles around the Dirac cone, the vector p turns by 2π and so does the sublattice pseudospin. The eigenstate thus acquires a -1 sign.

• The chiral nature of low-energy electrons in graphene places an additional constraint on their scattering properties. If a given potential doesn't break the A-B symmetry, then it is unable to influence the pseudospin degree of freedom which must, therefore, be conserved upon scattering. Considering only the pseudospin part of the chiral wave function ψ_{\pm} , the probability to scatter in a direction $\theta = 0$, where $\theta = 0$ is the forwards direction, is proportional to $w(\theta) = |\langle \psi_{\pm}(\theta) | \psi_{\pm}(0) \rangle|^2$. For monolayer graphene, $w(\theta) = \cos^2(\theta/2)$. This is anisotropic, and displays an absence of backscattering $w(\pi) = 0$]: scattering into a state with opposite momentum is prohibited because it requires a reversal of the pseudospin. Such conservation of pseudospin is at the heart of anisotropic scattering at potential barriers in graphene monolayers, known as Klein tunneling.

2.7.2 Chirality factor and the absence of backscattering

Here, we discuss an important consequence of the pseudospin, first discovered by Ando and coworkers in the context of carbon nanotubes [25,26]. Consider a massless Dirac electron, which is incident on an impurity whose potential is smooth on the lattice scale such that intervalley scattering is suppressed and the problem can be described within a single valley model (see Sect. 2.3). The impurity potential is therefore $\hat{V}_{imp}(\mathbf{r}) \approx U(\mathbf{r})\hat{1}$ [25,26]. For simplicity, though the argument can be made much more general (see [25,26] and the next paragraph), we will compute the scattering probability using the first order Born approximation. It is given by

$$P(\theta) \propto |\langle \mathbf{k}', \alpha'|U(\mathbf{r})\hat{1}|\mathbf{k}, \alpha\rangle|^2$$
 (21)

where $|\mathbf{k}, \alpha\rangle$ and $|\mathbf{k}', \alpha'\rangle$ are the initial and the final states respectively and θ is the angle between the final and initial wavevectors. As the collision is elastic k' = k and $\alpha' = \alpha$. Therefore the only freedom in the final state is the angle $\theta \equiv \phi_{\mathbf{k}'} - \phi_{\mathbf{k}}$ that \mathbf{k}' makes with \mathbf{k} . We are now in a position to compute the matrix element:

$$\langle \mathbf{k}', \alpha' | U(\mathbf{r}) \hat{1} | \mathbf{k}, \alpha \rangle = \frac{1 + e^{i\theta}}{2} \bar{U}(\mathbf{k}' - \mathbf{k})$$
 (22)

where $\tilde{U}(q) \equiv \int d^2 r U(r) \exp(i q \cdot r)$ is the Fourier transform of the potential U(r). Note that the transferred momentum is $q = 2k \sin(\theta/2)$. Therefore, the scattering probability reads:

$$P(\theta) \propto |\tilde{U}(\boldsymbol{q})|^2 \cos^2 \frac{\theta}{2} = |\tilde{U}(\boldsymbol{q})|^2 \frac{1 + \cos \theta}{2}.$$
 (23)

The first term $|\tilde{U}(\boldsymbol{q})|^2$ is the usual result of the Born approximation and the second $\cos^2 \frac{\theta}{2}$ is due to the sublattice pseudo-spin and is called the "chirality factor". The latter is just the square of the scalar product between the incoming and outgoing bispinors: $(1, e^{i\phi_k})/\sqrt{2}$ and $(1, e^{i\phi_{k'}})/\sqrt{2}$. The effect of the chirality factor is quite dramatic as it kills backscattering $(\boldsymbol{k'} = -\boldsymbol{k})$:

$$P(\theta = \pi) \propto |\tilde{U}(\boldsymbol{q})|^2 \cos^2 \frac{\pi}{2} = 0 \text{ with } \boldsymbol{q} = 2k.$$
 (24)

An intuitive explanation of this absence of backscattering is the following: if the electron tries to backscatter

 $\mathbf{k}' = -\mathbf{k}$ it also has to reverse its sublattice pseudo-spin $\sigma \to -\sigma$ as the pseudo-spin direction is tied to that of the momentum (indeed remember that away from the impurity $\hat{H}_{\rm kin} = \mathbf{k} \cdot \hat{\sigma}$). However, the potential $U(\mathbf{r})\hat{1}$ does not act in sublattice space (it is the unit matrix) and can therefore not reverse the pseudo-spin. Therefore backscattering is impossible. This has profound physical consequences on the transport properties of massless Dirac electrons, such as weak antilocalization [27–29].

(From P.E. Allain and J. N. Fuchs: Klein tunneling in graphene, Eur. Phys. J. B. 83, 201 (2011)). (Note : α is the band index in this text.)

1.5 Family of chiral 2DEGs

• In graphene (monolayer) $H_{\xi}(\mathbf{p})$ can be written as

$$H_{\xi}^{(J)} = -\xi^{J} \hbar v_{F} p_{c} \left(\frac{p}{p_{c}}\right)^{J} \left[\cos\left(J\theta\right)\sigma_{x} + \sin\left(J\theta\right)\sigma_{y}\right], \qquad (1.41)$$

with J = 1 where J is the chirality index. $E(p) \sim p$.

• In Bernal-stacked bilayer graphene, a low-energy Hamiltonian ($E << \gamma_1$) can be constructed where A_2, B_1 are the low-energy sites. The minimal Hamiltonian is given by $H_{\xi}^{(2)}$ i.e. J = 2 and $E(p) \sim p^2$.

$$\begin{pmatrix} A_1 \\ B_1 \\ A_2 \\ B_2 \end{pmatrix} \rightarrow \begin{pmatrix} A_1 \\ B_2 \end{pmatrix}$$
(1.42)

• In ABC-stacked trilayer graphene, the effective two-band model involves the low-energy sites A_1, B_3 and J = 3 i.e. $E(p) \sim p^3$.

$$\begin{pmatrix} A_1 \\ B_1 \\ A_2 \\ B_2 \\ A_3 \\ B_3 \end{pmatrix} \rightarrow \begin{pmatrix} A_1 \\ B_3 \end{pmatrix}$$
(1.43)

1.6 Example of the importance of the spinor structure

In second-quantization, we define the field operators as

$$\Psi_{\xi K}\left(\mathbf{r}\right) = \frac{1}{\sqrt{2S}} \sum_{\xi} \sum_{\mathbf{p}} e^{i\mathbf{p}\cdot\mathbf{r}} \begin{pmatrix} e^{-i\theta(\mathbf{p})/2} \\ -\xi e^{i\theta(\mathbf{p})/2} \end{pmatrix} c_{K,\mathbf{p},\boldsymbol{\xi}}.$$
(1.44)

The spinor structure modifies properties of the C2DEG wrt to the ordinary 2DEG. For example:

• Non-chiral 2DEG: retarded density response function is given by

$$\chi^{R}_{HF,nn}\left(\mathbf{q},\omega\right) = 2\frac{1}{\hbar S} \sum_{\mathbf{k}} \frac{f\left(E_{\mathbf{k}-\mathbf{q}}\right) - f\left(E_{\mathbf{k}}\right)}{\omega + i\delta - \left(E\left(\mathbf{k}\right) - E\left(\mathbf{k}-\mathbf{q}\right)\right)/\hbar},\tag{1.45}$$

• Chiral 2DEG:

$$\chi_{nn}^{R}(\mathbf{q},\omega) = \frac{1}{S\hbar} \sum_{s,s'} \sum_{\mathbf{k}} \left(1 + ss' \cos\left(\left(\theta_{\mathbf{k}} - \theta_{\mathbf{k}-\mathbf{q}}\right)\right)\right)$$

$$\times \frac{f\left(E_{s,\mathbf{k}-\mathbf{q}}\right) - f\left(E_{s',\mathbf{k}}\right)}{\omega + i\delta - \left(E_{s'}\left(\mathbf{k}\right) - E_{s}\left(\mathbf{k}-\mathbf{q}\right)\right)/\hbar}.$$
(1.46)

where $s = \pm 1$ for the conduction and valence bands. This affects the dielectric function

$$\varepsilon(\mathbf{q},\omega) = 1 - \frac{2\pi e^2}{q} \chi^R_{nn}(\mathbf{q},\omega) \,. \tag{1.47}$$

• Similar form factors appear in the conductivity response functions (and so in the calculation of the optical properties).

1.7 C2DEGs in a magnetic field

Peierls substitution

$$\mathbf{p} \to \mathbf{P} = \mathbf{p} + e\mathbf{A}/\hbar c \tag{1.48}$$

where $\nabla \times \mathbf{A} = \mathbf{B} = B_z \hat{\mathbf{z}}$ with $B_z > 0$. We get

$$H = -v_F \begin{pmatrix} 0 & P_x - iP_y \\ P_x + iP_y & 0 \end{pmatrix}$$
(1.49)

with the commutation relation

$$P_x, P_y = -i\frac{\hbar^2}{\ell^2},\tag{1.50}$$

where

$$\ell^2 = \frac{\hbar c}{eB_z} \tag{1.51}$$

is the magnetic length.

1.8 Landau levels and eigenfunctions

Ladder operators

$$a = \frac{\ell}{\sqrt{2\hbar}} \left(P_x - i P_y \right), \tag{1.52}$$

$$a^{\dagger} = \frac{\ell}{\sqrt{2\hbar}} \left(P_x + i P_y \right), \qquad (1.53)$$

obeying the commutation relation

$$\left[a, a^{\dagger}\right] = 1 \tag{1.54}$$

The Hamiltonian is now:

$$H_K = -\frac{\sqrt{2\hbar}v_F}{\ell} \begin{pmatrix} 0 & a \\ a^{\dagger} & 0 \end{pmatrix}.$$
 (1.55)

Landau gauge $\mathbf{A} = Bx\hat{\mathbf{y}}$. Solutions are

$$E_n^{(K)} = sgn(n) \frac{\sqrt{2\hbar}v_F}{\ell} \sqrt{|n|}$$
(1.56)

with

Fig. 6 (Left) Landau levels for Schrödinger electrons with two parabolic bands touching each other at zero energy. (Right) Landau levels for Dirac electrons.

	Band structure	Density of states	Landau levels
standard 2D semi- conductor:		(b)	
Graphene:			(f)

$$s_{0}^{(K)}\left(\mathbf{r}\right) = \begin{pmatrix} 0\\h_{0}\left(\mathbf{r}\right) \end{pmatrix}$$
(1.57)

and

$$s_{n}^{(K)}(\mathbf{r}) = \frac{1}{\sqrt{2}} \begin{pmatrix} sgn(n) ih_{|n|-1}(\mathbf{r}) \\ h_{|n|}(\mathbf{r}) \end{pmatrix}.$$
(1.58)

The functions

$$h_{0,X}\left(\mathbf{r}\right) = \frac{1}{\sqrt{L_y}} e^{-iky} \varphi_{0,k}\left(x\right),\tag{1.59}$$

and

$$h_{|n|}(\mathbf{r}) = \frac{1}{\sqrt{|n|!}} \left(a^{\dagger}\right)^{|n|} h_{0,k}(\mathbf{r})$$
(1.60)

are the usual Landau gauge wave functions for an ordinary 2DEG with $\varphi_{n,k}(x) = \varphi_n(x - k\ell^2)$, the wave functions of the harmonic oscillator in 1D.

_

For the K' valley

$$E_n^{\left(K'\right)} = sgn(n)\frac{\sqrt{2\hbar v_F}}{\ell}\sqrt{|n|}$$
(1.61)

$$s_0^{(K')}(\mathbf{r}) = \begin{pmatrix} h_0(\mathbf{r}) \\ 0 \end{pmatrix}$$
(1.62)

and

For n = 0

$$s_{n}^{\left(K'\right)}\left(\mathbf{r}\right) = \frac{1}{\sqrt{2}} \left(\begin{array}{c} h_{|n|}\left(\mathbf{r}\right)\\ -sgn\left(n\right)ih_{|n|-1}\left(\mathbf{r}\right) \end{array}\right).$$
(1.63)

For n = 0, valley and sublattice indices are equivalent.

• For graphene (monolayer)

$$H_K = -\frac{\sqrt{2\hbar}v_F}{\ell} \begin{pmatrix} 0 & a \\ a^{\dagger} & 0 \end{pmatrix}.$$
(1.64)

Note that there is a Landau level n = 0 with energy E = 0:

_

$$-\frac{\sqrt{2}\hbar v_F}{\ell} \begin{pmatrix} 0 & a \\ a^{\dagger} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ h_0(\mathbf{r}) \end{pmatrix} = 0 \begin{pmatrix} 0 \\ h_0(\mathbf{r}) \end{pmatrix}$$
(1.65)

n = 0 has degeneracy 2(spin) X 2 (valleys) X $N_{\varphi} = 4N_{\varphi}$. The spinor for K' is $\begin{pmatrix} h_0(\mathbf{r}) \\ 0 \end{pmatrix}$, valley and sublattice indices are equivalent.

• For AB-bilayer graphene

$$H_K \sim \frac{\gamma_0^2}{\gamma_1} \begin{pmatrix} 0 & a^2 \\ \left(a^{\dagger}\right)^2 & 0 \end{pmatrix}.$$
(1.66)

For the E = 0 Landau level:

$$\begin{pmatrix} 0 & a^2 \\ (a^{\dagger})^2 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ h_0(\mathbf{r}) \end{pmatrix} = 0; \begin{pmatrix} 0 & a^2 \\ (a^{\dagger})^2 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ h_1(\mathbf{r}) \end{pmatrix} = 0$$
(1.67)

The two "orbitals" h_0 and h_1 are degenerate with E = 0. The degeneracy is now 2 (spin) X 2 (valleys) X 2 (orbitals) $N_{\varphi} = 8N_{\varphi}$. For K', the spinors are $\begin{pmatrix} h_1(\mathbf{r}) \\ 0 \end{pmatrix}$, $\begin{pmatrix} h_2(\mathbf{r}) \\ 0 \end{pmatrix}$ and so valley and layer indices are equivalent.

• For ABC-trilayer graphene

$$H_{K} = \frac{\gamma_{0}^{3}}{\gamma_{1}^{2}} \begin{pmatrix} 0 & a^{3} \\ (a^{\dagger})^{3} & 0 \end{pmatrix}.$$
 (1.68)

The n = 0 spinors are for K

$$\begin{pmatrix} 0 \\ h_0(\mathbf{r}) \end{pmatrix}; \begin{pmatrix} 0 \\ h_1(\mathbf{r}) \end{pmatrix}; \begin{pmatrix} 0 \\ h_2(\mathbf{r}) \end{pmatrix}$$
(1.69)

and the reversed for K' so that valley and layer are equivalent. The three "orbitals" h_0 , h_1 , and h_2 are degenerate with E = 0. The degeneracy is now 2 (spin) X 2 (valleys) X 3 (orbitals) $N_{\varphi} = 12N_{\varphi}$.

• etc. for ABCA, ABCBA,...

1.9 Quantum Hall effects

1.10 Energies

• In-plane hopping between nearest-neighbors:

$$t = \gamma_0 = 2.8 \text{ eV},$$
 (1.70)

• Magnetic length:

$$\ell = \frac{256}{\sqrt{B(\text{Tesla})}},\tag{1.71}$$

• Gap between n = 1 and n = 0:

$$E_1 = 3.2947 \times 10^{-2} \sqrt{B} \text{ eV}$$
(1.72)
= 382.33 \sqrt{B} K

• Coulomb energy:

$$\frac{e^2}{\kappa \ell} = \frac{5.6249 \times 10^{-2} \sqrt{B}}{\kappa} \text{ eV}$$

$$= \frac{652.74}{\kappa} \sqrt{B} \text{ K}$$
(1.73)

• Zeeman energy:

$$g\mu_B B = 1.1577 \times 10^{-4} B \text{ eV}$$
 (1.74)
1.3434B K

1.11 Field operators

Here we use the same basis (A, B) for the two valleys:

$$\Psi_{K}(\mathbf{r}) = \sum_{n,k} e^{-i\mathbf{K}\cdot\mathbf{r}} \langle \mathbf{r}|K;n,k \rangle c_{K,n,k}$$

$$= \frac{1}{\sqrt{L_{y}}} \sum_{k} e^{-i\mathbf{K}\cdot\mathbf{r}} e^{-iky} \begin{pmatrix} 0\\ \varphi_{0} \left(x-k\ell^{2}\right) \end{pmatrix} c_{K,0,k}$$

$$+ \sum_{n \neq 0,k} \frac{1}{\sqrt{2L_{y}}} e^{-i\mathbf{K}\cdot\mathbf{r}} e^{-iky} \begin{pmatrix} isgn\left(n\right)\varphi_{|n|-1}\left(x-k\ell^{2}\right)\\ \varphi_{|n|}\left(x-k\ell^{2}\right) \end{pmatrix} c_{K,n,k}$$
(1.75)

and

$$\Psi_{K'}(\mathbf{r}) = \sum_{n,k} e^{-i\mathbf{K'}\cdot\mathbf{r}} \langle \mathbf{r}|K';n,k \rangle c_{K',n,k}$$

$$= \frac{1}{\sqrt{L_y}} \sum_{k} e^{-i\mathbf{K'}\cdot\mathbf{r}} e^{-iky} \begin{pmatrix} \varphi_0 \left(x-k\ell^2\right) \\ 0 \end{pmatrix} c_{K',0,k}$$

$$+ \sum_{n \neq 0,k} \frac{1}{\sqrt{2L_y}} e^{-i\mathbf{K'}\cdot\mathbf{r}} e^{-iky} \begin{pmatrix} \varphi_{|n|} \left(x-k\ell^2\right) \\ -isgn\left(n\right)\varphi_{|n|-1} \left(x-k\ell^2\right) \end{pmatrix} c_{K',n,k}.$$

$$(1.76)$$

1.12 Spinor structure and selection rules

The spinor structure plays again an important role in the calculation of the optical conductivity. For example

• Non-chiral 2DEG:

$$\overleftarrow{\sigma}_{\nu}(\omega) = \nu \frac{e^2}{h} \frac{i}{(\omega/\omega_c + i\delta)} \overleftarrow{1} - \nu \frac{e^2}{2h} \frac{i}{(\omega/\omega_c + i\delta)} \left[\frac{\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}}{(\omega/\omega_c + i\delta) + 1} - \frac{\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}}{(\omega/\omega_c + i\delta) - 1} \right].$$
(1.77)

Absorption is at ω_c only.

• Chiral 2DEG:

$$\sigma^{\alpha,\beta}(\omega) = \frac{2ie^2 v_F^2}{\pi \ell^2 \hbar (\omega + i\delta)} \sum_{n,m} \Lambda_{n,m}^{(\alpha)} \Lambda_{m,n}^{(\beta)} \frac{\langle \rho_{n,n}(0) \rangle - \langle \rho_{m,m}(0) \rangle}{\omega + i\delta - (E_m - E_n) / \hbar}$$
(1.78)

with

$$\Lambda_{n,m}^{(x)} = i \left[sgn(n) \,\delta_{|n|-1,|m|} - sgn(m) \,\delta_{|m|-1,|n|} \right], \tag{1.79}$$

$$\Lambda_{n,m}^{(y)} = sgn(n)\,\delta_{|n|-1,|m|} + sgn(m)\,\delta_{|m|-1,|n|}.$$
(1.80)

Selection rule is given by:

$$|n| \pm 1 = |m| \tag{1.81}$$

For ex.: transitions $2 \rightarrow 3, 2 \rightarrow 1, -2 \rightarrow -1, -2 \rightarrow -3, -2 \rightarrow 3, -2 \rightarrow 1$.

1.13 Second-quantized Hamiltonian

If we put this expression in the first-quantized hamiltonian, we get the second quantized form

$$H_{K} = \sum_{\xi} \int d\mathbf{r} \Psi_{\xi K}^{\dagger}(\mathbf{r}) H \Psi_{\xi K}^{\dagger}(\mathbf{r})$$

$$= -\frac{\sqrt{2}\hbar v_{F}}{\ell} \sum_{n,k} \sum_{n',k'} \left[\int d\mathbf{r} \langle \mathbf{r} | K; n, k \rangle^{\dagger} \begin{pmatrix} 0 & a \\ a^{\dagger} & 0 \end{pmatrix} \langle \mathbf{r} | K; n', k' \rangle \right] c_{K,n,k}^{\dagger} c_{K,n',k'} + K \rightleftharpoons K'$$

$$= \sum_{\xi,n,k} E_{n}^{(\xi K)} c_{\xi K,n,k}^{\dagger} c_{\xi K,n,k}$$
(1.82)

For the Coulomb interaction

$$U = \frac{1}{2} \sum_{\xi_1 \cdots \xi_4} \sum_{\alpha, \beta} \int d\mathbf{r} \int d\mathbf{r}' \Psi_{\alpha, \xi_1}^{\dagger}(\mathbf{r}) \Psi_{\beta, \xi_2}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \Psi_{\beta, \xi_3}(\mathbf{r}') \Psi_{\alpha, \xi_4}(\mathbf{r}), \qquad (1.83)$$

Terms that do not conserve the valley index involves rapidly oscillating integrands $e^{i(\mathbf{K}-\mathbf{K}')\cdot\mathbf{r}}$. These terms are very small and usually neglected. Thus:

$$U = \frac{1}{2} \sum_{\xi_1, \xi_2} \sum_{\alpha, \beta} \int d\mathbf{r} \int d\mathbf{r}' \Psi_{\alpha, \xi_1}^{\dagger}(\mathbf{r}) \Psi_{\beta, \xi_2}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \Psi_{\beta, \xi_2}(\mathbf{r}') \Psi_{\alpha, \xi_1}(\mathbf{r}), \qquad (1.84)$$

Now, write

$$V\left(\mathbf{r}-\mathbf{r}'\right) = \frac{1}{S} \sum_{\mathbf{q}} \frac{2\pi e^2}{\kappa q} e^{i\mathbf{q}\cdot\left(\mathbf{r}-\mathbf{r}'\right)},\tag{1.85}$$

so that with

$$V\left(\mathbf{q}\right) = \frac{2\pi e^2}{\kappa q} \tag{1.86}$$

$$U = \frac{1}{2S} \sum_{\mathbf{q}} V(\mathbf{q}) \sum_{\xi_1, \xi_2} \int d\mathbf{r} \int d\mathbf{r}' \Psi_{\alpha, \xi_1}^{\dagger}(\mathbf{r}) \Psi_{\beta, \xi_2}^{\dagger}(\mathbf{r}') e^{i\mathbf{q}\cdot(\mathbf{r}-\mathbf{r}')} \Psi_{\beta, \xi_2}(\mathbf{r}') \Psi_{\alpha, \xi_1}(\mathbf{r}).$$
(1.87)

which gives:

we have

$$U = \frac{1}{2S} \sum_{\mathbf{q}} V(\mathbf{q}) \sum_{n_1,\dots,n_4} \sum_{k_1,\dots,k_4} \sum_{\xi_1,\xi_2} (1.88)$$
$$\times \int d\mathbf{r} \langle \xi_1; n_1, k_1 | \mathbf{r} \rangle e^{i\mathbf{q} \cdot \mathbf{r}} \langle \mathbf{r} | \xi_1; n_4, k_4 \rangle$$
$$\times \int d\mathbf{r}' \langle \xi_2; n_2, k_2 | \mathbf{r} \rangle e^{-i\mathbf{q} \cdot \mathbf{r}'} \langle \mathbf{r} | \xi_2; n_3, k_3 \rangle$$
$$\times c^{\dagger}_{\xi_1,n_1,k_1} c^{\dagger}_{\xi_2,n_2,k_2} c_{\xi_2,n_3,k_3} c_{\xi_1,n_4,k_4}$$

The Coulomb interaction will depend on the matrix elements:

$$\int d\mathbf{r} \langle \xi; n, k | \mathbf{r} \rangle e^{i\mathbf{q} \cdot \mathbf{r}} \langle \mathbf{r} | \xi; n', k' \rangle \equiv e^{\frac{i}{2}q_x \left(k+k'\right)\ell^2} \Xi_{n,n'} \left(\mathbf{q}\right) \delta_{k,k'-q_y}.$$
(1.89)

1.14 Hartree-Fock approximation (monolayer graphene)

We approximate the Coulomb interaction by the Hartree-Fock pairings:

$$\Psi_{\xi_{1}}^{\dagger}(\mathbf{r})\Psi_{\xi_{2}}^{\dagger}(\mathbf{r}')\Psi_{\xi_{2}}(\mathbf{r}')\Psi_{\xi_{1}}(\mathbf{r}) \rightarrow 2\left\langle\Psi_{\xi_{1}}^{\dagger}(\mathbf{r})\Psi_{\xi_{1}}(\mathbf{r})\right\rangle\Psi_{\xi_{2}}^{\dagger}(\mathbf{r}')\Psi_{\xi_{2}}(\mathbf{r}') \\
-2\left\langle\Psi_{\xi_{1}}^{\dagger}(\mathbf{r})\Psi_{\xi_{2}}(\mathbf{r}')\right\rangle\Psi_{\xi_{1}}^{\dagger}(\mathbf{r})\Psi_{\xi_{1}}(\mathbf{r}).$$
(1.90)

After some algebra ... $(N = S/2\pi\ell^2$ is the Landau level degeneracy) and if we ignore Landau level mixing, we get for the electrons in Landau level n:

$$H = N_{\phi} \sum_{n,\xi,\alpha} E_{n,\alpha} \rho_{n}^{\alpha,\xi;\alpha,\xi} (\mathbf{q} = 0)$$

$$+ N_{\phi} \left(\frac{e^{2}}{\kappa \ell}\right) \sum_{\alpha,\beta} \sum_{\xi,\xi'} \sum_{\mathbf{q}} H_{n} (\mathbf{q}) \left\langle \rho_{n}^{\alpha,\xi;\alpha,\xi} (\mathbf{q}) \right\rangle \rho_{n}^{\beta,\xi';\beta,\xi'} (-\mathbf{q})$$

$$- N_{\phi} \left(\frac{e^{2}}{\kappa \ell}\right) \sum_{\alpha,\beta} \sum_{\xi,\xi'} \sum_{\mathbf{q}} X_{n} (\mathbf{q}) \left\langle \rho_{n}^{\alpha,\xi;\beta,\xi'} (\mathbf{q}) \right\rangle \rho_{n}^{\beta,\xi';\alpha,\xi} (-\mathbf{q}) .$$

$$(1.91)$$

where

$$\rho_{n}^{\alpha,\xi;\beta,\xi'}\left(\mathbf{q}\right) \equiv \frac{1}{N_{\phi}} \sum_{k,k'} e^{-\frac{i}{2}q_{x}\left(k+k'\right)\ell^{2}} \delta_{k,k'+q_{y}} c_{\alpha,\xi,n,k}^{\dagger} c_{\beta,\xi',n,k'}.$$
(1.92)

The average values of these operators are the order parameters for the different **broken-symmetry** phases of the C2DEG.

$$\langle \rho_n^{a,a} \left(\mathbf{q} \right) \rangle = \text{populations}$$
 (1.93)

$$\langle \rho_n^{a,b\neq a}(\mathbf{q}) \rangle = \text{coherences}$$
 (1.94)

18

• Exemples of coherence

$$\left\langle \rho_{n}^{K,K'} \right\rangle = \text{valley coherence},$$
 (1.95)

$$\langle \rho_n^{\uparrow,\downarrow} \rangle = \text{spin coherence},$$
 (1.96)

$$\langle \rho^{n=0,n=1} \rangle$$
 = orbital coherence (bilayer and trilayer) (1.97)

The number of possible broken-symmetry states is large (uniform states, CDW states, SDW, PSDW, crystals, etc.)

The Hartre and Fock interactions are defined by

$$H_{n}\left(\mathbf{q}\right) = \left(\frac{1}{q\ell}\right) \Xi_{n}\left(\mathbf{q}\right) \Xi_{n}\left(-\mathbf{q}\right),$$

and

$$X_{n}\left(\mathbf{q}\right) = \left(\frac{\kappa\ell}{e^{2}}\right) \frac{1}{S} \sum_{\mathbf{p}} V\left(\mathbf{p}\right) \Xi_{n}\left(\mathbf{p}\right) \Xi_{n}\left(-\mathbf{p}\right) e^{i\mathbf{p}\times\mathbf{q}\ell^{2}}$$
(1.98)

with

$$\Xi_{n}\left(\mathbf{q}\right) = \frac{1}{2}\Theta\left(|n|\right)e^{\frac{-q^{2}\ell^{2}}{4}}\left[L_{|n|}^{0}\left(\frac{q^{2}\ell^{2}}{2}\right) + L_{|n|-1}^{0}\left(\frac{q^{2}\ell^{2}}{2}\right)\right] + \delta_{n,0}e^{\frac{-q^{2}\ell^{2}}{4}}$$
(1.99)

The Hartree-Fock energy of the C2DEG in a magnetic field is:

$$\frac{E}{N} = \frac{1}{\nu} \sum_{\xi,\alpha} E_{\alpha} \nu_{n,\sigma,\alpha}$$

$$+ \frac{1}{2\nu} \left(\frac{e^2}{\kappa \ell} \right) \sum_{\alpha,\beta} \sum_{\xi,\xi'} \sum_{\mathbf{q}} H_n \left(\mathbf{q} \right) \left\langle \rho_n^{\alpha,\xi;\alpha,\xi} \left(\mathbf{q} \right) \right\rangle \left\langle \rho_n^{\beta,\xi';\beta,\xi'} \left(-\mathbf{q} \right) \right\rangle$$

$$- \frac{1}{2\nu} \left(\frac{e^2}{\kappa \ell} \right) \sum_{\alpha,\beta} \sum_{\xi,\xi'} \sum_{\mathbf{q}} X_n \left(\mathbf{q} \right) \left| \left\langle \rho_n^{\alpha,\xi;\beta,\xi'} \left(\mathbf{q} \right) \right\rangle \right|^2.$$
(1.100)

Interactions $H_n(q) - X_n(q)$ for n = 1, 2, 3, 4 (blue: normal 2DEG, violet C2DEG)

- H and X in n = 0 are identical to the normal 2DEG interactions
- The Fock and Hartree interactions are independent of spin and valley indices
- In this form, we can study uniform and well as non-uniform states of the C2DEG.
- For a uniform state,

$$\left\langle \rho_n^{\alpha,\xi;\alpha,\xi} \left(\mathbf{q} = \mathbf{0} \right) \right\rangle \neq 0$$
 (1.101)

and

$$H_n\left(\mathbf{0}\right) = 0 \tag{1.102}$$

(infinite terms are cancelled by the positive background). Also

$$\sum_{\alpha,\beta} \sum_{\xi,\xi'} \left| \left\langle \rho_n^{\alpha,\xi;\beta,\xi'} \left(0 \right) \right\rangle \right|^2 = \nu.$$
(1.103)

Thus

$$\frac{E}{N} = \frac{1}{\nu} \sum_{\xi,\alpha} E_{\alpha} \nu_{n,\xi,\alpha} - \frac{1}{2} \left(\frac{e^2}{\kappa \ell}\right) X_n(0). \qquad (1.104)$$

The Fock term is constant. It follows that the ground states for $\nu = 1, 3$ are spin polarized while the ground states for $\nu = 2, 4$ are spin unpolarized.

• For the spin polarized state, the energy is independent of how the electrons are distributed in the two valleys. If we define a valley pseudospin, then at $\nu = 1$:

$$\frac{E}{N} = E_{n,K} + \frac{1}{4\nu_n} \left(\frac{e^2}{\kappa\ell}\right) \sum_{\mathbf{q}} \Upsilon_n(\mathbf{q}) \langle \rho_n(-\mathbf{q}) \rangle \langle \rho_n(\mathbf{q}) \rangle + \frac{1}{\nu_n} \left(\frac{e^2}{\kappa\ell}\right) \sum_{\mathbf{q}} J_n(\mathbf{q}) \left[\langle \mathbf{S}_n(-\mathbf{q}) \rangle \cdot \langle \mathbf{S}_n(\mathbf{q}) \rangle \right].$$
(1.105)

with

and

 $J_{n}\left(\mathbf{q}\right) = -X_{n}\left(\mathbf{q}\right),\tag{1.106}$

(1.107)

For the liquid state

$$\frac{E}{N} = E_{n,K} - \frac{1}{4} \left(\frac{e^2}{\kappa\ell}\right) X_n(0) + J_n(0) \left(\frac{e^2}{\kappa\ell}\right) \left|\left\langle \mathbf{S}_n(0)\right\rangle\right|^2$$
(1.108)

and so, because $J_n(0) < 0$, the minimal energy is obtained when $|\mathbf{S}_n(0)|$ is maximized in any direction. The ground state is pseudo-ferromagnetic. We then expect a Goldstone mode with a quadratic dispersion relation.

 $\Upsilon_{n}\left(\mathbf{q}\right)=2H_{n}\left(\mathbf{q}\right)-X_{n}\left(\mathbf{q}\right).$

• (From R. Côté, J. -F. Jobidon, and H. A. Fertig, PRB 78, 085309 (2008).):

FIGURE 1.2.

FIGURE 1.3.