
CHAPTER 1

Hartree-Fock Hamiltonians for the chiral 2DEGs in
graphene and bilayer graphene

1.1 Basic notions

• Lattice structure: honeycomb lattice of C atoms (triangular lattice with 2 C per unit cell: A and B)

The crystal structure of graphene.

• Primitive vectors:

a1 = 

Ã
1

2
−
√
3

2

!
 (1.1)

a2 =  (1 0)  (1.2)

with  =
√
3 where  = 142 Å is the spacing between carbons atoms.
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• Nearest-neighbors:

δ1 = 

µ
1

2

1

2
√
3

¶
 (1.3)

δ2 = 

µ
−1
2

1

2
√
3

¶
 (1.4)

δ3 = 

µ
0− 1√

3

¶
 (1.5)

• sp2 hybridization,  and  bonds

• Reciprocal lattice:

b2

b1

y

x

Reciprocal lattice of graphene.
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• Valleys:

K0 =

µ
2

3
 0

¶
2


 (1.6)

K =

µ
−2
3
 0

¶
2


 (1.7)

y

x

K

K’

K’

K’

K

K

First Brillouin zone of graphene.

• Band structure: eith 2 C’s per unit cell, we have 8 bandes: 6  bands and 2  bands:

• Fermi level: valence of C is 4: 3  and 1  bands are occupied in undoped graphene.
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1.2 Tight-binding hamiltonian for the  bands

• Hamiltonian for the  bands:
 = −

X
hi

³

†
  + 

´
 (1.8)

with  ≈ 28 eV and 0 ≈ 01 eV, 00 ≈ 007 eV.
• Fourier transform to k and k operators:

 =
1√


X
k

k·Rk (1.9)

 =
1√


X
k

k·Rk (1.10)

with n
k 

†
k0

o
=
n
k 

†
k0

o
= kk0  (1.11)

• Hamiltonian:
 =

X
k

¡

†
k 

†
k

¢µ 0 Λ (k)

Λ∗ (k) 0

¶µ
k
k

¶
 (1.12)

where

Λ (k) = −
X


k· (1.13)

The TB Hamiltonian is diagonalized to give:

 =
X
k

 (k) 
†
kk +

X
k

 (k) 
†
kk (1.14)

• Band structure:

 (k) = +
p
Λ (k)Λ∗ (k) = +

vuut1 + 4 cos2µ
2

¶
+ 4 cos

µ


2


¶
cos

Ã√
3

2


!
 (1.15)

 (k) = −
p
Λ (k)Λ∗ (k) = −

vuut1 + 4 cos2µ
2

¶
+ 4 cos

µ


2


¶
cos

Ã√
3

2


!
 (1.16)
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1.3 Continuum approximation

We consider that the doping is small so that the Fermi level is near energy  = 0 and we can use the band

structure around the valley points ± Expanding to linear order in  we get the linear dispersion:

 (p) = ±} |p|  (1.17)

where the Fermi velocity is

 =
3

2}
' 1× 106m/s (1.18)

For the Hamiltonians (basis )

 (p) = −
µ

0 −

 0

¶
= −σ · p (1.19)

0 (p) = +

µ
0 

− 0

¶
= +σ

∗ · p (1.20)

where:

tan  =



 (1.21)

The eigenspinors give the wave function on site  and  For the  and 0 valleys and the conduction
(C) and valence (B) bands:

 (p) =
1√
2

µ
−(p)2

−(p)2
¶
  (p) =

1√
2

µ
−(p)2

(p)2

¶
 (1.22)


0

 (p) =
1√
2

µ
(p)2

−(p)2

¶
 

0
 (p) =

1√
2

µ
(p)2

−−(p)2
¶
 (1.23)

If we use the basis () for  and () for 0 then: ( = +1 for  and  = −1 for 0)

 (p) = −
µ

0 −

 0

¶
= −σ · p (1.24)

and we have for the sublattice spinors



 (p) =

1√
2

µ
−(p)2

−(p)2
¶

(1.25)



 (p) =

1√
2

µ
−(p)2

(p)2

¶
 (1.26)

1.4 Helicity

A general spin 12 spinor is given by

|+iu = cos
³
2

´
−2 |+i+ sin

³
2

´
+2 |−i  (1.27)

|−iu = sin
³
2

´
−2 |+i− cos

³
2

´
+2 |−i  (1.28)

For  = 2 :

|+iu =
1√
2

h
−2 |+i+ +2 |−i

i
 (1.29)

|−iu =
1√
2

h
−2 |+i− +2 |−i

i
 (1.30)
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With the correspondence

|i → |+i  (1.31)

|i → |−i  (1.32)

we have ¯̄̄
 (p)

E
= |−iu 

¯̄̄
 (p)

E
= |+iu  (1.33)¯̄̄


0

 (p)
E

= |+iu 
¯̄̄


0
 (p)

E
= |−iu  (1.34)

where

u =bp (1.35)

The sublattice spinor is in (or opposite) the direction of the electronic momentum. For 0 :

The helicity is defined as the projection of the pseudospin onto the direction of propagation

 = σ · p|p|  (1.36)

In graphene

 (p) = −σ · p =−  |p|  (1.37)

and so

 =
 (p)

− |p| = −1 (c.b.) and + 1 (v.b.) (1.38)

0 =
0 (p)

 |p| = +1 (c.b.) and − 1 (v.b.) (1.39)

(in this picture,  and 0 are inverted w.r.t. my definitions)
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• The chirality is equivalent to the helicity only for masless particle.

• The eigenstates of the Dirac Hamiltonian are also eigenstates of the chirality operator and so chirality
is a good quantum number. It is conserved. Chirality is a quantum number that is conserved in elastic

scattering processes induced by impurity potentials  =  (r)  ( is the unit matrix) that vary

smoothly on the lattice scale. This type of potential does not permit inter-valley scattering and so  is

fixed and  =  is conserved. This effect gives rise to the absence of backscattering in graphene and

is at the origin of the Klein tunneling (perfect transmission through a high potential barrier at normal

incidence).

• Note that chirality is a good number only in the vicinity of the Dirac points. If we include higher-order
corrections, it is no longer conserved.

• The rotation operator by an angle  about an axis u for a spin 12 particle is given by

u () = −

2
·u = cos

³
2

´
− σ · u sin

³
2

´
 (1.40)

We see that a rotation in the spin space by  = 2 gives a phase factor of  This means, in our

case, that if the particule circles around the Dirac cone, the vector  turns by 2 and so does the

sublattice pseudospin. The eigenstate thus acquires a −1 sign.

• The chiral nature of low-energy electrons in graphene places an additional constraint on their scatter-
ing properties. If a given potential doesn’t break the A-B symmetry, then it is unable to influence the

pseudospin degree of freedom which must, therefore, be conserved upon scattering. Considering only

the pseudospin part of the chiral wave function ±, the probability to scatter in a direction  = 0,

where  = 0 is the forwards direction, is proportional to  () =
¯̄­
± () |± (0)

®¯̄2
. For monolayer

graphene,  () = cos2 (2). This is anisotropic, and displays an absence of backscattering  () = 0]:

scattering into a state with opposite momentum is prohibited because it requires a reversal of the

pseudospin. Such conservation of pseudospin is at the heart of anisotropic scattering at potential bar-

riers in graphene monolayers, known as Klein tunneling.
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(From P.E. Allain and J. N. Fuchs: Klein tunneling in graphene, Eur. Phys. J. B. 83, 201 (2011)). (Note

:  is the band index in this text.)

1.5 Family of chiral 2DEGs

• In graphene (monolayer)  (p) can be written as


()

 = −}
µ




¶
[cos () + sin ()]  (1.41)

with  = 1 where  is the chirality index.  () ∼ 

• In Bernal-stacked bilayer graphene, a low-energy Hamiltonian (  1) can be constructed where

2 1 are the low-energy sites. The minimal Hamiltonian is given by 
(2)

 i.e.  = 2 and  () ∼ 2⎛⎜⎜⎝
1
1
2
2

⎞⎟⎟⎠→ µ
1
2

¶
(1.42)
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• In ABC-stacked trilayer graphene, the effective two-band model involves the low-energy sites 1 3
and  = 3 i.e.  () ∼ 3 ⎛⎜⎜⎜⎜⎜⎜⎝

1
1
2
2
3
3

⎞⎟⎟⎟⎟⎟⎟⎠→
µ

1
3

¶
(1.43)
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1.6 Example of the importance of the spinor structure

In second-quantization, we define the field operators as

Ψ (r) =
1√
2

X


X
p

p·r
µ

−(p)2

−(p)2
¶
p (1.44)

The spinor structure modifies properties of the C2DEG wrt to the ordinary 2DEG. For example:

• Non-chiral 2DEG: retarded density response function is given by

 (q) = 2
1

}

X
k

 (k−q)−  (k)

 +  − ( (k)− (k− q)) }  (1.45)

• Chiral 2DEG:

 (q) =
1

}

X
0

X
k

(1 + 0 cos ((k − k−q))) (1.46)

×  (k−q)−  (0k)

 +  − (0 (k)− (k− q)) } 

where  = ±1 for the conduction and valence bands. This affects the dielectric function

 (q ) = 1− 2
2


 (q)  (1.47)

• Similar form factors appear in the conductivity response functions (and so in the calculation of the

optical properties).

1.7 C2DEGs in a magnetic field

Peierls substitution

p→ P = p+ A} (1.48)
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where ∇×A = B =bz with   0. We get

 = −
µ

0  − 
 +  0

¶
(1.49)

with the commutation relation

  = −}
2

2
 (1.50)

where

2 =
}


(1.51)

is the magnetic length.

1.8 Landau levels and eigenfunctions

Ladder operators

 =
√
2}
( − )  (1.52)

† =
√
2}
( + )  (1.53)

obeying the commutation relation £
 †

¤
= 1 (1.54)

The Hamiltonian is now:

 = −
√
2}


µ
0 

† 0

¶
 (1.55)

Landau gauge A = by Solutions are
() = ()

√
2}


p
|| (1.56)

with
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
()
0 (r) =

µ
0

0 (r)

¶
(1.57)

and

() (r) =
1√
2

µ
 () ||−1 (r)

|| (r)

¶
 (1.58)

The functions

0 (r) =
1p


−0 ()  (1.59)

and

|| (r) =
1p
||!

¡
†
¢||

0 (r) (1.60)

are the usual Landau gauge wave functions for an ordinary 2DEG with  () = 
¡
− 2

¢
 the wave

functions of the harmonic oscillator in 1D.

For the 0 valley


(0)
 = ()

√
2}


p
|| (1.61)

For  = 0


(0)
0 (r) =

µ
0 (r)

0

¶
(1.62)

and


(0)
 (r) =

1√
2

µ
|| (r)

− () ||−1 (r)
¶
 (1.63)

For  = 0 valley and sublattice indices are equivalent.

• For graphene (monolayer)
 = −

√
2}


µ
0 

† 0

¶
 (1.64)

Note that there is a Landau level  = 0 with energy  = 0 :

−
√
2}


µ
0 

† 0

¶µ
0

0 (r)

¶
= 0

µ
0

0 (r)

¶
(1.65)

 = 0 has degeneracy 2(spin) X 2 (valleys) X  = 4. The spinor for 
0 is

µ
0 (r)

0

¶
 valley and

sublattice indices are equivalent.
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• For AB-bilayer graphene

 ∼ 20
1

µ
0 2¡
†
¢2

0

¶
 (1.66)

For the  = 0 Landau level:

µ
0 2¡
†
¢2

0

¶µ
0

0 (r)

¶
= 0;

µ
0 2¡
†
¢2

0

¶µ
0

1 (r)

¶
= 0 (1.67)

The two "orbitals" 0 and 1 are degenerate with  = 0 The degeneracy is now 2 (spin) X 2 (valleys)

X 2 (orbitals)  = 8 For 
0 the spinors are

µ
1 (r)

0

¶


µ
2 (r)

0

¶
and so valley and layer

indices are equivalent.

• For ABC-trilayer graphene

 =
30
21

µ
0 3¡
†
¢3

0

¶
 (1.68)

The  = 0 spinors are for 

µ
0

0 (r)

¶
;

µ
0

1 (r)

¶
;

µ
0

2 (r)

¶
(1.69)

and the reversed for 0 so that valley and layer are equivalent. The three "orbitals" 0, 1 and 2
are degenerate with  = 0 The degeneracy is now 2 (spin) X 2 (valleys) X 3 (orbitals)  = 12

• etc. for ABCA, ABCBA,..
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1.9 Quantum Hall effects

1.10 Energies

• In-plane hopping between nearest-neighbors:
 = 0 = 28 eV, (1.70)

• Magnetic length:
 =

256p
(Tesla)

 (1.71)

• Gap between  = 1 and  = 0 :

1 = 3 294 7× 10−2
√
 eV (1.72)

= 382 33
√
 K

• Coulomb energy:
2


=

5 624 9× 10−2
√



eV (1.73)

=
652 74



√
 K

• Zeeman energy:
 = 1 157 7× 10−4 eV (1.74)

13434 K
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1.11 Field operators

Here we use the same basis () for the two valleys:

Ψ (r) =
X


−K·r hr|; i  (1.75)

=
1p


X


−K·r−
µ

0

0
¡
− 2

¢ ¶ 0

+
X
6=0

1p
2

−K·r−
µ

 ()||−1
¡
− 2

¢
||

¡
− 2

¢ ¶


and

Ψ0 (r) =
X


−K
0·r hr|0; i 0 (1.76)

=
1p


X


−K
0·r−

µ
0
¡
− 2

¢
0

¶
00

+
X
6=0

1p
2

−K
0·r−

µ
||

¡
− 2

¢
− ()||−1

¡
− 2

¢ ¶ 0

1.12 Spinor structure and selection rules

The spinor structure plays again an important role in the calculation of the optical conductivity. For example

• Non-chiral 2DEG:

←→  () = 
2





( + )

←→
1 − 

2

2



( + )

⎡⎢⎢⎣
µ

1 

− 1

¶
( + ) + 1

−

µ
1 −
 1

¶
( + )− 1

⎤⎥⎥⎦  (1.77)

Absorption is at  only.

• Chiral 2DEG:

 () =
222

2} ( + )

X


Λ()Λ
()


­
 (0)

®− ­ (0)
®

 +  − ( −) }
(1.78)

with

Λ() = 
£
 () ||−1|| −  () ||−1||

¤
 (1.79)

Λ() =  () ||−1|| +  () ||−1||  (1.80)

Selection rule is given by:

|| ± 1 = || (1.81)

For ex.: transitions 2→ 3 2→ 1−2→ −1−2→ −3−2→ 3−2→ 1
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1.13 Second-quantized Hamiltonian

If we put this expression in the first-quantized hamiltonian, we get the second quantized form

 =
X


Z
rΨ

†
 (r)Ψ

†
 (r) (1.82)

= −
√
2}


X


X
00

∙Z
r hr|; i†

µ
0 

† 0

¶
hr|;0 0i

¸

†
00 + ­ 0

=
X


() 
†


For the Coulomb interaction

 =
1

2

X
1···4

X


Z
r

Z
r0Ψ†1 (r)Ψ

†
2

(r0) (r− r0)Ψ3 (r0)Ψ4 (r)  (1.83)

Terms that do not conserve the valley index involves rapidly oscillating integrands (K−K
0)·r These terms

are very small and usually neglected. Thus:

 =
1

2

X
12

X


Z
r

Z
r0Ψ†1 (r)Ψ

†
2

(r0) (r− r0)Ψ2 (r0)Ψ1 (r)  (1.84)
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Now, write

 (r− r0) = 1



X
q

22


q·(r−r

0) (1.85)

so that with

 (q) =
22


(1.86)

we have

 =
1

2

X
q

 (q)
X
12

Z
r

Z
r0Ψ†1 (r)Ψ

†
2

(r0) q·(r−r
0)Ψ2 (r

0)Ψ1 (r)  (1.87)

which gives:

 =
1

2

X
q

 (q)
X

14

X
14

X
12

(1.88)

×
Z

r h1;1 1|ri q·r hr|1;4 4i

×
Z

r0 h2;2 2|ri −q·r
0 hr|2;3 3i

×†111
†
222

233144

The Coulomb interaction will depend on the matrix elements:Z
r h; |ri q·r hr|;0 0i ≡ 


2
(+0)2Ξ0 (q) 0−  (1.89)

1.14 Hartree-Fock approximation (monolayer graphene)

We approximate the Coulomb interaction by the Hartree-Fock pairings:

Ψ
†
1
(r)Ψ

†
2
(r0)Ψ2 (r

0)Ψ1 (r) → 2
D
Ψ
†
1
(r)Ψ1 (r)

E
Ψ
†
2
(r0)Ψ2 (r

0) (1.90)

−2
D
Ψ
†
1
(r)Ψ2 (r

0)
E
Ψ
†
2
(r0)Ψ1 (r) 

After some algebra ... ( = 22 is the Landau level degeneracy) and if we ignore Landau level mixing,

we get for the electrons in Landau level  :

 = 

X



;
 (q = 0) (1.91)

+

µ
2



¶X


X
0

X
q

 (q)
­
; (q)

®


0;0
 (−q)

−

µ
2



¶X


X
0

X
q

 (q)
D
;

0
 (q)

E


0;
 (−q) 

where

;
0

 (q) ≡ 1



X
0

−

2
(+0)20+

†
00  (1.92)

The average values of these operators are the order parameters for the different broken-symmetry phases

of the C2DEG.

h (q)i = populations (1.93)­
6= (q)

®
= coherences (1.94)
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• Exemples of coherence D
0


E
= valley coherence, (1.95)­

↑↓
®
= spin coherence, (1.96)­

=0=1
®
= orbital coherence (bilayer and trilayer) (1.97)

The number of possible broken-symmetry states is large (uniform states, CDW states, SDW, PSDW,

crystals, etc.)

The Hartre and Fock interactions are defined by

 (q) =

µ
1



¶
Ξ (q)Ξ (−q) 

and

 (q) =

µ


2

¶
1



X
p

 (p)Ξ (p)Ξ (−p) p×q
2

(1.98)

with

Ξ (q) =
1

2
Θ (||) −

22

4

∙
0||

µ
22

2

¶
+ 0||−1

µ
22

2

¶¸
+ 0

−22
4 (1.99)

The Hartree-Fock energy of the C2DEG in a magnetic field is:




=

1



X


 (1.100)

+
1

2

µ
2



¶X


X
0

X
q

 (q)
­
; (q)

® D


0;0
 (−q)

E
− 1
2

µ
2



¶X


X
0

X
q

 (q)
¯̄̄D
;

0
 (q)

E¯̄̄2


Interactions  ()− () for  = 1 2 3 4 (blue: normal 2DEG, violet C2DEG)

•  and  in  = 0 are identical to the normal 2DEG interactions

• The Fock and Hartree interactions are indepenent of spin and valley indices
• In this form, we can study uniform and well as non-uniform states of the C2DEG.

• For a uniform state, ­
; (q = 0)

® 6= 0 (1.101)

and

 (0) = 0 (1.102)

(infinite terms are cancelled by the positive background). AlsoX


X
0

¯̄̄D
;

0
 (0)

E¯̄̄2
=  (1.103)

Thus



=
1



X


 − 1
2

µ
2



¶
 (0)  (1.104)

The Fock term is constant. It follows that the ground states for  = 1 3 are spin polarized while the

ground states for  = 2 4 are spin unpolarized.
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FIGURE 1.1.

• For the spin polarized state, the energy is independent of how the electrons are distributed in the
two valleys. If we define a valley pseudospin, then at  = 1 :




= 

+
1

4

µ
2



¶X
q

Υ (q) h (−q)i h (q)i (1.105)

+
1



µ
2



¶X
q

 (q) [hS (−q)i · hS (q)i] 

with

 (q) = − (q)  (1.106)

and

Υ (q) = 2 (q)− (q)  (1.107)

For the liquid state




=  − 1

4

µ
2



¶
 (0) +  (0)

µ
2



¶
|hS (0)i|2 (1.108)

and so, because  (0)  0, the minimal energy is obtained when |S (0)| is maximized in any direc-
tion. The ground state is pseudo-ferromagnetic. We then expect a Goldstone mode with a quadratic

dispersion relation.

• (From R. Côté, J. -F. Jobidon, and H. A. Fertig, PRB 78, 085309 (2008).):
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FIGURE 1.2.



22 1. Hartree-Fock Hamiltonians for the chiral 2DEGs in graphene and bilayer graphene

FIGURE 1.3.


