
7. FUNCTIONAL INTEGRALS

In first quantization, the Feynmann path integral is an integral over all coordi-
nates. The coordinates are operators in the Hamiltonian formalism. In the path
integral case, the argument of the exponential is the action in units of �. By anal-
ogy, in second quantization, we want a path integral where the argument of the
exponential is the action and the integrals are over fields. For bosons, it suffices
to wok in the coherent state basis. Coherent states for bosons are the analogs of
classical fields. What are coherent states for fermions? This is what we set to
do first. Then the functional integral follows naturally. An excellent reference is
J.W. Negele and H. Orland, "Quantum Many-Particle Systems" (Addison-Wesley,
Redwood city, 1988).

7.1 Grassmann variables for fermions

7.1.1 Fermion coherent states

We wish to compute the partition function for time-ordered products with imaginary-
time dependent Hamiltonians. This occurs when one does perturbation theory, or
with source fields. To rewrite the partition function, or expectation values, it is
convenient to use a basis where the partition function is expressed as a functional
integral. In the case of bosons, one uses coherent states. In the case of fermions,
by analogy, one can define fermion coherent states. For simplicity, we work with
spinless fermions.

Let c be a fermion destruction operator, then c |0〉 = 0 while for the fermion
coherent state η, we have

c |η〉 = η |η〉 . (7.1)

Since c1c2 |η1, η2〉 = −c2c1 |η1, η2〉 the eigenvalues η must be numbers that anti-
commute. Namely,

{η1, η2} = 0. (7.2)

Since Grassmann numbers occur only inside time-ordered products, it turns out
that it suffices to define the adjoint in such a way that it also anticommutes, there
is no delta function:

{

η, η†
}

= 0. (7.3)

Given the definition of Grassmann numbers, one can write an explicit definition of
fermion coherent states in the Fock basis is we add the definition that Grassmann
numbers and fermion operators also anticommute:

|η〉 =
(

1− ηc†
)

|0〉 (7.4)

Given that η2 = 0, one can verify the defining property c |η〉 = η |η〉 Eq.(7.1):

c |η〉 = c |0〉+ ηcc† |0〉 = η |0〉 = η
(

1− ηc†
)

|0〉 = η |η〉 . (7.5)

Also, again since η2 = 0, we can sude the definition

|η〉 = e−ηc† |0〉 (7.6)

that has the same structure as a boson coherent state.
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7.1.2 Grassmann integrals

In the case of bosons, the amplitude of a coherent state is arbitrary. For fermions,
we imagine something analog. We must define then Grassmann integrals. To have
meaning as integrals, these must satisfy properties such as

∫

dηf (η + ξ) =

∫

dηf (η) (7.7)

where ξ is another Grassmann number. The most general function of a Grassmann
variable is f (η) = a + bη since η2 = 0. Hence, the above property is satisfied if
∫

dηbξ = 0, which implies
∫

dη = 0. (7.8)

For derivatives and integrals to be coherent, the formula for integration by parts
is also satisfied with the above definition (as if f vanished at infinity)

∫

dη
df

dη
= 0. (7.9)

Linearity
∫

dη (af (η) + bg (η)) =

∫

dηaf (η) +

∫

dηbg (η) (7.10)

will be satisfied as long as
∫

dηη is a number. The choice
∫

dηη = 1 (7.11)

is convenient. The last property is consistent with the fact that the product of
two Grassmann numbers is an ordinary number. In the end, note that the formula
for integration looks the same as the formula for differentiation. The two rules
Eqs.7.8 and 7.11 are all we need to remember.

7.1.3 Grassmann Gaussian integrals

Let us practice with the integral we will meet all the time, the analog of the

Gaussian integral. With the above rules for integration, and e−η†η = 1− η†η that
follows from η2 = 0, we find

∫

dη†
∫

dηe−η†aη =

∫

dη†
∫

dη
(

1− η†aη
)

= a = exp (log (a)) (7.12)

where a is an ordinary number. If we have two Grassman variables,
∫

dη1

∫

dη†1e
−η

†
1
a1η1

∫

dη2

∫

dη†2e
−η

†
2
a2η2 =

∫

dη1

∫

dη†1

∫

dη2

∫

dη†2e
−η

†
1
a1η1e−η

†
2
a2η2 = a1a2 (7.13)

= exp [log a1 + log a2] (7.14)

The quantity a1a2 is the determinant of the diagonal matrix with a1 and a2 on
the diagonal. In a general basis then we write in matrix notation

∏

i

∫

dηi

∫

dη†ie
−η

†
Aη = det (A) = exp [Tr log (A)] . (7.15)
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The last equalities follow by using the fact that the determinant and the trace are
both basis independent. We abbreviate further the notation with the definition of
the integration measure

∫

Dη†
∫

Dηe−η
†
Aη ≡

∏

i

∫

dηi

∫

dη†ie
−η

†
Aη. (7.16)

There is another gaussian integral to do that is simple and that will allow us
to use source fields to our benefit. Defining the Grassman source fields J and J†,
we can use what we know about shifting the origin of integration, Eq.(7.7), and
obtain

∫

dη†
∫

dηe−η†aη−η†J−J†η =

∫

dη†
∫

dηe−(η
†+J†a−1)a(η+a−1J)+J†a−1J(7.17)

= a exp
(

J†a−1J
)

. (7.18)

The generalization to integrals over many Grassmann variables gives

∫

Dη†
∫

Dηe−η
†
Aη−η

†
J−J

†
η =

∫

Dη†
∫

Dηe−(η
†+J

†
A

−1)A(η+A
−1

J)+(J†
A

−1
J)

= det (A) exp
(

J
†
A

−1
J
)

(7.19)

We will be able to use this result to obtain Green’s functions or multipoint func-
tions from functional derivatives with respect to J .

7.1.4 Completeness relation and trace formula

To find the expression for the partition function, we will need the completeness
relation. From the last result of the previous section, one can verify the following
closure formula by applying it successively on |0〉 and on c† |0〉 :

∫

dη†
∫

dηe−η†η |η〉 〈η| =

∫

dη†
∫

dη
(

1− η†η
)

|η〉 〈η| = I. (7.20)

Take a single state that can be empty or occupied. The trace of an operator O
can be written as follows,

Tr[O] =

∫

dη†
∫

dηe−η†η 〈−η|O |η〉 . (7.21)

The minus sign reflects the antiperiodicity that we encounter with fermions. To
prove the above formula, it suffices to use the definition of the fermionic coherent
state Eq.(7.4). Indeed,

∫

dη†
∫

dηe−η†η 〈−η|O |η〉 =

∫

dη†
∫

dηe−η†η 〈0|
(

1 + cη†
)

O
(

1− ηc†
)

|0〉

=

∫

dη†
∫

dη
(

1− η†η
)

〈0|
(

1 + cη†
)

O
(

1− ηc†
)

|0〉

=

∫

dη†
∫

dη
(

1− η†η
) (

〈0|O |0〉 − 〈0| cη†Oηc† |0〉
)

=

∫

dη†
∫

dη
(

1− η†η
) (

〈0|O |0〉+ η†η 〈0| cOc† |0〉
)

= 〈0|O |0〉+ 〈1|O |1〉 (7.22)
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In the next to last equation, we assumed that O contains an even number of
fermion operators so that

ηO = −Oη. (7.23)

The set is overcomplete since using the definition in terms of Fock states Eq.(7.4),
one finds

〈η1 |η2〉 = 〈η|
(

1− cη†1

)

(

1− η2c
†
)

|0〉 = 1 + η†1η2 = eη
†
1
η
2 . (7.24)

7.1.5 The functional integral for a single fermion

For spinless fermions whose Hamiltonian is given by H =
∑

i εic
†
ici, the partition

function is

Z = Tr (exp (−βH)) =
∏

i

(

1 + e−βεi
)

= det
(

1 + e−βε
)

(7.25)

where ε is the diagonal matrix. The expression remains valid in an arbitrary
basis. What is the generalization of this result when H depends on τ and we want
a time-ordered product

Z = Tr

(

Tτ exp

(

−

∫ β

0

dτH (τ)

))

? (7.26)

We can work this out in the usual operator formalism. With Grassmann variables,
we need to suffer first, but then the calculations are easy and formally very close
to those for bosons.

Let us start with a single fermion state, so that

H = εc†c.

Then, we express the trace in the coherent fermion basis. In that basis, we do
not know how to compute e−βH |η〉 since the expansion of the exponential gives
an infinite number of terms. We can however use the Trotter decomposition to do
a Taylor expansion that will be easy to evaluate in the coherent state basis. The
Trotter decomposition is given by

e−βH = lim
Nτ→∞

Nτ
∏

i=1

e−∆τ iH = lim
Nτ→∞

Nτ
∏

i=1

(1−∆τ iH) . (7.27)

with∆τ = β/Nτ . The index i on∆τ is just to allow us to keep track of the different
terms. Even ifH was time dependent, we could use this approximation in the limit
∆τ → 0 because [∆τH (τ1) ,∆τH (τ2)] = O (∆τ)2 and we will neglect terms of
that order. In other words, for ∆τ → 0 we can assume that exponentials of sums
of operators can be rewritten as a product of exponentials. There is one subtlety.
We have many time-slices. Since Nτ (∆τ)

2 = β∆τ , it looks as if the error is of

order ∆τ , not (∆τ)
2
. Fye has shown that the prefactor of β∆τ vanishes when one

is interested in expectation values of certain kinds of operators. This is basically
because the operator in front of ∆τ is a commutator and is thus anti-Hermitian.
The trace of that anti-hermitian operator vanishes.

Back to our task. Using the trace formula in the coherent state basis Eq.(7.21)
and inserting the completeness relation Eq.(7.20) between each term of the prod-
uct, we can evaluate the exponential in the coherent-state basis. We find, with
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the definitions ηβ = ηNτ
= −η0

Z = lim
Nτ→∞

Nτ
∏

i=1

∫

Dη†
∫

Dηe−η
†

β
ηβ

〈

ηβ
∣

∣ 1−∆τNτ
εc†c

∣

∣ηNτ−1

〉

e
−η†

Nτ−1
η
Nτ−1

〈

ηNτ−1

∣

∣

. . . |η1〉 e
−η

†
1
η
1 〈η1| 1−∆τ1εc

†c |η0〉 (7.28)

= lim
Nτ→∞

Nτ
∏

i=1

∫

Dη†
∫

Dηe−η
†

β
ηβ

〈

ηβ
∣

∣ηNτ−1

〉

e−εη
†

β
ηNτ−1

∆τ e−η
†

Nτ−1
ηNτ−1

〈

ηNτ−1

∣

∣

. . . |η1〉 e
−η

†
1
η
1 〈η1 |η0〉 e

−εη
†
1
η
0
∆τ . (7.29)

which is a time-ordered product. The overlaps are given by, for example, e−η
†
1
η
1 〈η1 |η0〉

= e−η
†
1
η
1
+η

†
1
η
0 . The above formula is obviously generalizable to a time-dependent

Hamiltonian that appears in a time-ordered product. To evaluate this quantity
on a computer, we need to first do the integrals over Grassmann variables and
express the result in terms of matrices, remembering that the definition of the
matrices must be read off the above formula. There is no ambiguity. Recalling

that e−η
†
1
η
1 〈η1 |η0〉 = e−η

†
1
η
1
+η

†
1
η
0 , the matrix A that appeared in Eq.(7.15) can

be written as

A =













1 0 0 0 (1− ε∆τ)
−1 + ε∆τ 1 0 0 0
0 −1 + ε∆τ 1 . . . 0
0 0 . . . . . . 0
0 0 0 −1 + ε∆τ 1













≡ −G−1.

(7.30)
In actual computations, it is more accurate to replace −1+ ε∆τ by −eε∆τ . If ε is
time dependent, it suffices to replace its value at the appropriate time slice. The
above matrix has dimension Nτ ×Nτ . Labels 0 to Nτ − 1 or 1 to Nτ can be used.
In other words, either time τ = 0 or τ = β can be present as independent labels,
but not both. They are related by antiperiodicity.

The continuum limit can also be taken formally. We can combine the expo-
nentials coming from the completeness relation and from the overlap of fermion
coherent states as follows

e−η
†
1
η
1 〈η1 |η0〉 = e−η

†
1
η
1
+η

†
1
η
0 = e−η

†
1
(η

1
−η

0
) = e−η

†
1

∂
∂τ

η
1
∆τ . (7.31)

Also, to leading order in ∆τ , we approximate terms such as η†1η0∆τ by η
†
0η0∆τ .

If we take the limit and impose the ηβ = −η0 on the last matrix element to the
left, we can rewrite the partition function as

Z =

∫

Dη†
∫

Dη exp (−S) (7.32)

where, by analogy with the Lagrangian formalism, we define the following quantity

S =

∫ β

0

dτ

(

η† (τ)
∂

∂τ
η (τ) + ε (τ) η† (τ) η (τ)

)

(7.33)

as the action S. We have generalized also to a time-dependent Hamiltonian. The
integrand is like a Lagrangian when η† (τ) and η (τ) are taken as conjugate vari-
ables.

Thinking of the η at different times as different variables, we can use our
formula for Guaussian integrals over Grassmann variables Eq.(7.15) the partition
funciton can be written as

Z = det

(

∂

∂τ
+ ε (τ)

)

= exp

[

Tr log

(

∂

∂τ
+ ε (τ)

)]

. (7.34)
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The matrix entering determinant and trace above is defined by returning to the
discrete representation.

In the case of a time-independent Hamiltonian, the determinant can be evalu-
ated as follows. Go to the basis where the time derivative is diagonal, namely the
Matsubara-frequency basis. Then, we obtain

Z = exp [Tr log (−iωn + ε)] = exp

[

∑

n

log (−iωn + ε) e−iωn0
−

]

(7.35)

= exp

[

∑

n

log
(

−G−1 (iωn)
)

e−iωn0
−

]

. (7.36)

The factor e−iωn0
−

is made necessary to have a unique result. To verify that this
formula is correct, we can use the expression for the occupation number

n =
Tr

(

exp (−βH) c†c
)

Tr (exp (−βH))
= −

∂ lnZ

∂ (βε)

= −

∂
∑

n

log (−iωn + ε) e−iωn0
−

∂ (βε)
= T

∑

n

e−iωn0
−

(iωn − ε)
=

1

1 + eβǫ
. (7.37)

Integrating, we recover the formula obtained in the canonical formalism Eq.(7.25).
To find the Green’s function or any higher order Green’s function, we add

source fields and use derivatives. We can confirm that this works at the level of
the Green’s function by starting from our previous result for Gaussian Grassmann
integrals with sources, Eq.(7.19). We just rename the matrix A as −G−1 and
check that this is consistent with the definition of th Green’s function

Z =

∫

Dη†
∫

Dηe−η
†(−G−1)η−η

†
J−J

†
η

G (iωn) = −
1

Z

∫

Dη†
∫

Dηe−η
†(−G−1)η−η

†
J−J

†
ηηiωn

η†iωn

= −
∂2 lnZ

∂J†∂J

∣

∣

∣

∣

J=0

= −
∂2 ln

[

det
(

−G−1
)

exp
(

J
†
(

−G−1
)−1

J

)]

∂J†∂J

∣

∣

∣

∣

∣

∣

J=0

(7.38)

= −
∂2

(

J
†
(

−G−1
)−1

J

)

∂J†∂J

∣

∣

∣

∣

∣

∣

J=0

. (7.39)

7.1.6 Quantum impurities

Assume I have a single level with some Hubbad interaction and hybridization to
a bath of non-interacting electrons. This time we restore spins. Let ψσ be the
Grassman variables associated with the impurity, and ησ (k) those associated with
the bath. The levels in the bath are labeled by k. The partition function then is

Z =

∫

Dψ†

∫

Dψ

∫

Dη†
∫

Dη exp [−S] (7.40)

with
S = SI + SIb + Sb (7.41)
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where the impurity action is

SI =

∫ β

0

dτ

[

∑

σ

(

ψ†
σ (τ)

∂

∂τ
ψσ (τ) + εIψ

†
σ (τ)ψσ (τ)

)

+ Uψ†
↑ (τ)ψ↑ (τ)ψ

†
↓ (τ)ψ↓ (τ)

]

=

∫ β

0

dτ

[

∑

σ

(

ψ†
σ (τ)

(

−G−1
0

)

ψσ (τ)
)

+ Uψ†
↑ (τ)ψ↑ (τ)ψ

†
↓ (τ)ψ↓ (τ)

]

(7.42)

with the bath

Sb =

∫ β

0

dτ
∑

k

∑

σ

[

η†σ (k, τ)
∂

∂τ
ησ (k, τ) + ε (k) η†σ (k, τ) ησ (k, τ)

]

(7.43)

=

∫ β

0

dτ
∑

k

∑

σ

η†σ (k, τ)
(

−G−1
b (k, τ)

)

ησ (k, τ) (7.44)

and the hybridization between impurity and bath

SIb =

∫ β

0

dτ
∑

k

∑

σ

[

Vσ (k)ψ
†
σ (τ) ησ (k, τ) + V ∗

σ (k) η†σ (k, τ)ψσ (τ)
]

. (7.45)

The functional integral over the bath degrees of freedom η†σ (k, τ) , ησ (k, τ) can
be done easily if we identify the source fields in the Gaussian Grassmann integral
Eq.(7.19) as

Jσ (k, τ) = Vσ (k)ψσ (τ) . (7.46)

The integral over the bath degrees of freedom leaves us with

Z = exp
[

Tr log
(

−G−1
b

)]

∫

Dψ†

∫

Dψ exp
[

−SI + J
†
(

−G−1
b

)−1
J

]

. (7.47)

The prefator is the determinant associated with the bath. It will drop out from
observables associated only with the impurity. In Matsubara frequencies the bath
Green’s function is diagonal so it is easy to rewrite the term involving the source
as

J
† (−Gb)J =

∑

n

∑

σ

ψ†
σ (iωn)

(

∑

k

V ∗
σ (k)

−1

iωn − ε (k)
Vσ (k)

)

ψσ (iωn) . (7.48)

This term thus just modifies G−1
0 in the impurity action. We define the hybridiza-

tion function

∆(iωn) ≡
∑

k

V ∗
σ (k)

1

iωn − ε (k)
Vσ (k) . (7.49)
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