
Continuous-Time Quantum Monte Carlo Impurity
Solvers: Improvements and Applications

by

Patrick Sémon

A thesis submitted to the physics department in
accordance with the requirements of the degree of
Doctor of Philosophy in the Faculty of Science.
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Abstract

Originally designed for the study of strong electronic correlations in model Hamiltonians,

dynamical mean field theory (DMFT) has become, in combination with density functional

theory (DFT), a powerful tool for ab initio simulations of real materials. At the heart of

DMFT lies the solution of a quantum impurity problem. While only the continuous-time

quantum Monte Carlo (CT-QMC) impurity solvers yield (statistically) exact solutions

of a general impurity problem, they are quite complex and computationally expensive.

Hence, in this thesis we are interested in improving the CT-QMC impurity solvers. After

a short introduction to DMFT and its cluster extensions, we begin by reviewing two

of the CT-QMC impurity solvers, the interaction expansion or “Rubtsov” solver (CT-

INT) and the hybridization expansion solver (CT-HYB). Focussing on the latter, which

is the algorithm of choice within real material simulations, we then show how to reduce

a sign problem, allowing us to address the unusual criticality found in layered organic

superconductors. With high-Tc superconductivity as example, we further discuss how to

ensure ergodicity of the CT-HYB solver in the context of broken symmetries. Finally,

algorithmic optimizations of CT-HYB are presented and combined, leading to speedups

of up to 500 within the context of real material simulations.
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Sommaire

Initialement conçue pour traiter les fortes corrélations électroniques dans des hamil-

toniens modèles, la théorie du champ moyen dynamique (DMFT) est devenue, en com-

binaison avec la théorie de la densité fonctionnelle (DFT), un outil puissant pour la

simulation de matériaux réels. Au coeur de la DMFT se trouve la solution d’un modèle

d’impureté quantique. Seulement les solutionneurs d’impureté Monte Carlo en temps

continu (CT-QMC) donnent des solutions exactes. En même temps, ces solutionneurs

sont plutôt complexes et gourmands en temps de calcul. Le but de cette thèse est donc

d’améliorer les solutionneurs d’impureté CT-QMC. Après une courte introduction à la

DMFT et à ses extensions pour les amas, on commence par une revue de deux des solu-

tionneurs CT-QMC, celui en dévélopement d’interaction ou de “Rubtsov” (CT-INT) et

celui en dévélopement d’hybridation (CT-HYB). Mettant l’accent sur le dernier, qui est

l’algorithme de choix dans le cadre des matériaux réels, on montre alors comment réduire

un problème de signe, nous permettant ainsi de traiter la criticalité inhabituelle des or-

ganiques en couche. Avec la supraconductivité à haute température critique comme ex-

emple, on discute ensuite comment assurer l’ergodicité du solutionneur CT-HYB dans le

cadre des symétries brisées. Finalement, des optimisations algorithmiques sont présentées

et combinées, amenant à des accélérations allant jusqu’à un facteur de 500 dans le con-

texte des matériaux réels.
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Introduction

Solid-state physics seeks to understand and predict the macroscopic properties of ma-

terials, starting from its microscopic constituents. Such a goal seems too ambitious at

first sight. In classical mechanics, three bodies subjected to the gravitational force are

sufficient to have a problem. Here we have to deal with quantum mechanics and the

problem consists of about 1023 interacting particles. However, the different time and

energy scales involved allow, at least qualitatively, to simplify the problem. First, the

Born-Oppenheimer approximation decouples the equation of motion of the electrons and

the nuclei to a large extend. Second, the binding energy of the core electrons is large

compared to the available thermal energy, and only the valence electrons actively con-

tribute to the electronic properties of a material. While this considerably reduces the

degrees of freedom, the remaining problem is in general still hard. For a large class of

materials however, generally having partially filled s and p-orbitals, a further drastic

simplification can be made. The large overlap between these orbitals leads to delocalized

electrons with wave like character and a kinetic energy which is large compared to the

potential energy from the Coulomb repulsion. The electrons use this large kinetic energy

to efficiently screen their charges, and the problem reduces to that of a single electron

moving in an effective periodic potential formed by the other valence electrons and the

nuclei with the core electrons. Conceptually, the low energy spectrum of these weakly

correlated materials are well described by Landau’s Fermi liquid theory [34], and for

quantitative predictions, the density functional theory (DFT) [23, 25] in its traditional

approximations offers a powerful framework.

DFT shows that there is a functional of the electronic density which is minimized for

the true electronic density, and its value at this minimum is the energy. This functional

is decomposed into a sum of terms which are exactly calculable, and a remaining one
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Introduction 2

which is not exactly calculable. This term embodies the exchange-correlations, and for

weakly correlated materials, the local density approximation (LDA) or the generalized

gradient approximations (GCA) [30] for example often yield accurate predictions. From

a numerical point of view, the description of electrons in terms of a density instead of a

many particle wave function is very convenient. This allows to directly attack the full

electronic problem and makes DFT approaches ab initio.

An important class of weakly correlated materials are the semi-conductors. For an-

other class of materials however, the so called strongly correlated materials, the various

traditional approximations for the exchange-correlation term fail. The insulators CoO

and La2CuO4 for example are predicted to be metallic by LDA [3]. This failure of LDA

comes from strong correlations that also give rise to many other interesting physical prop-

erties. For example, superconductivity at liquid Nitrogen temperatures was completely

unexpected and represents at the same time a significant technological advance and a

great intellectual challenge. Large Seebeck coefficients, which are of great interest for

cooling at cryogenic temperatures, are found in correlated materials such as FeSb2 [6].

Other interesting properties include colossal magnetoresistance [8] or a large dielectric

constant as for example in the Mott insulator CaCu3Ti4O12 [17]. However, correlations

manifest themselves not only in surprising properties of exotic materials, but play also

an important role in our body, as for example in heme [37].

These strongly correlated materials generally have partially filled d and f -orbitals, which

are spatially more confined than the s and p-orbitals. The valence electrons have both

particle and wave-like character and their kinetic energy is comparable to the potential

energy. This makes the screening inefficient, and the Coulomb interaction can not any-

more be absorbed into an effective potential. Approximating as for example in LDA the

unknown exchange-correlation term by that of a free electron gas can not capture the

strong interaction within these narrow band materials. From a conceptual point of view,

the excitation spectra can not be described in terms of well defined quasi-particles, and

one traditionally resorts to (lattice) model Hamiltonians to study, at least qualitatively,

these excitations.

In contrast to weakly correlated systems, there is no reliable tool for a strongly corre-

lated system in general, and even at first sight simple Hamiltonians such as the Hubbard

model are not yet completely understood. While perturbative approaches allow insights
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for parameter regimes which are adiabatically connected to the non-interacting limit,

they generally fail for the strongly correlated regime. Among the non-perturbative ap-

proaches, the density matrix renormalization group (DMRG) [40] yields essentially exact

results for system sizes sufficiently large for most purposes, but it is however restricted

to one dimensional systems. For higher dimensions, a finite size scaling with exact di-

agonalization (ED) can be used. However, the attainable systems sizes are in general to

small to allow a reliable scaling. Quantum Monte Carlo methods, which allow in princi-

ple to consider systems big enough for a reliable scaling, are hampered by the infamous

sign problem arising for fermionic systems. A tool which incorporates the infinite system

limit from beginning is the dynamical mean field theory (DMFT) [10, 9] approximation.

The full lattice Hamiltonian is self-consistently mapped on a quantum impurity problem,

consisting of a small interacting system immersed in a bath of non-interacting electrons.

DMFT yields good approximations if the correlations are essentially local, that is, can

be captured by the small interacting system.

In contrast to the DFT+LDA approximation for example, DMFT can capture the strong

interactions of electrons in the narrow d and f orbitals. However, DMFT starts from a

model Hamiltonian and is not ab initio. In view of real material design, combining DFT

and DMFT is hence very promising, and a lot of effort has been put in this direction

over the last years [26, 2, 16, 7, 19, 18, 29]. In contrast to DFT+LDA and the like,

which are established tools and accessible through popular computational packages such

as for example Wien2k, ABINIT and Vasp, the combination DFT+DMFT is still under

development.

The difficult task within DMFT is the solution of an impurity problem. While various

approximative schemes are available, only the continuous-time quantum Monte Carlo

(CT-QMC) impurity solvers give (statistically) exact solutions [11]. However, this ex-

act solution has its price. Compared to the approximate schemes, the CT-QMC solvers

are quite complex and time consuming. In this thesis, we focus hence on improving

the CT-QMC solvers, especially the continuous-time hybridization expansion (CT-HYB)

impurity solver [38, 39, 15], which is the method of choice for impurity problems as aris-

ing in the context DFT+DMFT. This solver is also well suited for the study of model

Hamiltonians in the strongly interacting regime at low temperatures within cluster gen-

eralizations of DMFT [12], and improvements of CT-HYB are hence critical for advances

both in the conceptual understanding of strongly correlated systems and in the ab initio
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simulation of real materials.

In chapter 1, we begin with an short introduction to DMFT and its cluster generaliza-

tions, focussing thereby on the basic concepts rather than giving an exhaustive review.

For this chapter, the reader is assumed to be familiar with quantum many body theory.

In the next chapter, we review two of the CT-QMC impurity solvers, the interaction ex-

pansion or ”Rubtsov” solver (CT-INT) [35] and the CT-HYB solver. This chapter begins

with an introduction to Monte Carlo integrators and presumes undergraduate knowledge

of quantum mechanics only. The next three chapters contain the main results. In chapter

3, we discuss how to alleviate the infamous sign problem of fermionic Monte Carlo sim-

ulations in the case of the CT-HYB solver. This improvement allows us to address the

unusual criticality found in the layered organics. In chapter 4, we show that care has to

be taken when using the CT-HYB solver in the context of broken symmetries, and apply

our findings to the problem of superconductivity in the cuprates. Chapter 5 focusses on

algorithmic optimizations of the CT-HYB solver. For this, we begin by adapting a data

structure from computer science, the skip lists, to the present requirements. We then

show how to combine the skip lists with another optimization, the lazy trace evaluation,

first presented in [42]. Finally, the different optimizations are benchmarked considering

test cases from real material simulations. This thesis ends with a conclusion, followed

by four appendices. The first two are complements to chapter 2, the last two are user

guides for C++ implementations of the CT-INT and CT-HYB solver respectively.



Chapter 1

Quantum Cluster Approaches

One way of solving a quantum mechanical problem is by diagonalizing the Hamiltonian.

While the complete set of eigenvectors and eigenvalues then allows to calculate any

observable, this approach is in general inapplicable for systems consisting of more than

a few orbitals, as the Hilbert is explicitly involved. A more handy object than a state

vector of this Hilbert space is the Green function

Gαβ(τ) := −〈Tτcα(τ)c†β〉, (1.1)

which contains all the information about the one particle excitations in the system. The

non-interacting Green function G0 of a system is given by its one body Hamiltonian h0

as

G0(iωn) :=
1

iωn + μ− h0

. (1.2)

A connection is made between these two Green functions without explicitly involving the

Hilbert space. The Green function is the sum over all connected Feynmann diagrams,

and this is compactly written with Dysons equation as

G(iωn) = G0(iωn) + G0(iωn)Σ(iωn)G(iωn). (1.3)

The self-energy Σ is the sum of all one particle irreducible Feynmann diagrams with two

open legs, and Dyson’s equation then generates all diagrams of the interacting Green

function.

From a perturbative point of view, the self-energy is hence more appealing than the

5



Chapter 1 : Quantum Cluster Approaches 6

Green function. Even more appealing in this respect is the dressed diagrammatic expan-

sion of the self-energy as sum of all two-particle irreducible diagrams with two open legs.

The Green function entering the perturbative approximation of the self-energy is then

self-consistently determined with Dyson’s equation.

The Hartree-Fock approximation for example keeps only the first two diagrams. For the

Hubbard Hamiltonian, the so obtained self-energy reads ΣHF
σ = Unσ, where U is the

Hubbard interaction and nσ the filling. The Green function obtained with ΣHF
σ and the

Dyson equation yields a filling, and this self-consistently determines nσ.

Such mean field theories allow naturally to work in the infinite-system limit and to study

broken symmetries. Hartree-Fock mean-field theory however neglects all temporal corre-

lations, and is not appropriate for strongly interacting systems.

Quantum cluster theories offer a way to work in the infinite-system limit while taking at

least all short-range correlations into account [31]. These theories come in different guises.

Focussing here on the self-consistent formulations, we begin with a precursor, the dynam-

ical mean field theory (DMFT) [10, 9], with the example of a Hubbard model on a lattice.

In DMFT, the lattice model is self-consistently mapped on a single site Hubbard im-

purity model

H = −μ(n↑ + n↓) + Un↑n↓ +
∑
σκ

(Vκd
†
σaσκ + V ∗

κ a
†
κσdσ) +

∑
σκ

εκa
†
σκaσκ, (1.4)

where dσ and aσκ destroy a spin-σ electron on the impurity and the bath level κ respec-

tively. U is the Hubbard interaction and μ the chemical potential. The hybridization

amplitudes Vκ connect the impurity Hamiltonian with the non-interacting bath with dis-

persion εκ. The interactions are captured within the impurity Hamiltonian, and the bath

replaces the missing lattice. The bath degrees of freedom are conveniently encapsulated

in the hybridization function

Δ(iω) =
∑
κ

|Vκ|2
iωn − εκ

, (1.5)

which is determined by the DMFT self-consistency as follows.

The self-energy of an impurity model is nonzero on the impurity only. Approximating

the lattice self-energy on each site by the impurity self-energy Σimp, Dyson’s equation
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yields an approximate lattice Green function

Glatt(iωn,k) ≈ 1

iωn + μ− ε(k) − Σimp(iωn)
, (1.6)

where ε(k) is the dispersion relation of the lattice. The self-consistency condition then

requires that the projection of this lattice Green function on a site coincides with the

impurity Green function

Gimp(iωn) =
1

(2π)2

∫
dk

1

iωn + μ− ε(k) − Σimp(iωn)
. (1.7)

This determines the hybridization function Δ, which has to be adjusted to satisfy this

self-consistency.

Diagrammatically, the DMFT self-consistency can be interpreted as follows. The dressed

diagrammatic expansion of the self-energy only depends on the interacting part of the

Hamiltonian. This interacting part is locally the same in the lattice model and in the

impurity model. That is, the impurity self-energy can be seen as obtained by summing

up all lattice self-energy diagrams with support on a site, and the DMFT self-consistency

determines the Green function entering in this expansion by projecting the lattice Dyson

equation on a site. This is in contrast to Hartree-Fock, where only the first two terms

of the self-energy diagrams are kept. But here, there is no spatial restriction. Another

way of saying is that the DMFT self-energy only depends on the frequency, whereas the

Hartree-Fock self-energy only depends on the wave-vector.

The impurity model serves thus as an auxiliary system to sum up self-energy diagrams.

More precisely, the hybridization function relates the impurity Green function and self-

energy through the impurity Dyson equation as

Σimp(iωn) = iωn + μ− Δ(iωn) −Gimp(iωn), (1.8)

where Gimp is obtained by solving the impurity problem.

The quality of the DMFT approximation depends on the spatial extension of the true

lattice self-energy. Except in the trivial limits, that is a non-interacting lattice model or

a lattice model without hopings between the sites, DMFT is exact in infinite dimension,

as the self-energy is local in this limit as well [33]. In lower dimensions, spatial correla-
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tions become important. Quantum cluster theories capture these correlations partially

by replacing the single site impurity by a cluster impurity.

1.1 Cellular Dynamical Mean Field Theory

Cellular dynamical mean field theory (CDMFT) [27] is, as the name suggests, a natural

extension of DMFT. Instead of summing up all self-energy diagrams with support on a

site of the lattice, all diagrams with support on a cluster of sites are summed up. These

clusters periodically cover all the lattice, without overlap. This yields an approximate

lattice self-energy which is finite on the clusters but zero between the clusters. Similar

to DMFT, a cluster impurity model allows in practice to sum up the cluster self-energy

diagrams, and projecting the lattice Dyson equation on a cluster then self-consistently

determines the unknown cluster hybridization function. We demonstrate this again with

the example of the Hubbard model on a lattice.

In DMFT, the Dyson equation is best formulated in k-space, as the approximate lat-

tice self-energy is translationally invariant. In CDMFT, the full translational invariance

is broken, but remains however invariant with respect to translations compatible with

the partitioning. Hence a mixed reciprocal and real space basis is appropriate here.

A lattice vector r is written as sum of a vector R labeling the sites within a cluster, and

a vector r̃ labeling the origins of the clusters. A quantity Qr,r′ with two indices on the

lattice, translationally invariant with respect to the partitioning, is written as a matrix

in the cluster coordinates Q(r̃) defined by QR,R′(r̃) := fR+r̃,R′ . Denoting with k̃ a wave

vector in the reduced Brillouin zone according to the partitioning, the Fourier transforms

are given as

Q(k̃) =
∑
r̃

eik̃r̃Q(r̃) and Q(r̃) =
1

(2π)2Ncl

∫
e−ikr̃Q(k̃)dk̃, (1.9)

where Ncl is the number of sites in a cluster. With these notations, the lattice Green

function obtained with the CDMFT approximation of the lattice self-energy reads

Glatt(iωn, k̃) ≈ 1

iωn + μ− t(k̃) −Σcl(iωn)
, (1.10)
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where Σcl is the cluster self-energy and t(k) the fourier transform of the hopping matrix.

The projection on a cluster is obtained as

Gcl(iωn) =
1

(2π)2Ncl

∫
1

iωn + μ− t(k̃) −Σcl[Gcl](iωn)
dk̃, (1.11)

and this determines the cluster Green function Gcl entering the dressed diagrammatic

expansion of the lattice self-energy in the CDMFT approximation.

To obtain this functional dependence Σcl[Gcl] by means of an impurity model, the inter-

acting part of the local Hamiltonian is chosen as

HI
loc = U

∑
R

nR↑nR↓, (1.12)

where the sum goes over the sites of a cluster. The non-interacting matrix h0
loc of the

cluster Hamiltonian and the hybridization function Δcl are then determined by combining

the CDMFT self-consistency in equation (1.11) with the impurity Dyson equation

Gcl(iωn)
−1 = iωn + μ− h0

loc −Δcl(iωn) −Σcl. (1.13)

A comparison of the high-frequency expansion of G−1
cl as given by equations (1.11) and

(1.13) yields the condition

h0
loc =

1

(2π)2Ncl

∫
t(k̃)dk̃, (1.14)

that is the restriction of the lattice hopping matrix to the cluster. To determine the

hybridization function Δcl, one usually proceeds iteratively.

At iteration n = 0, we begin by a rough guess of the cluster self-energy, for example

the Hartree-Fock approximation. With equation (1.11) and equation (1.13), this yields

a initial hybridization function Δ1
cl. Now set n = 1 and repeat

1. Solve the impurity problem Gcl = Gcl[Δ
n
cl].

2. Extract the self-energy Σcl = iω+μ−Δn
cl−G−1

cl with the impurity Dyson equation.

3. Use the lattice Dyson equation to calculate a G′
cl.

4. Extract the hybridization function Δn+1
cl = iω + μ−Σcl −G′−1

cl with the impurity

Dyson equation.
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5. Check if the results are converged. If not start again with n → n + 1.

This iterative procedure is compactly written as Δn+1
cl = F (Δn

cl), and the fixed point

satisfies the self-consistency. For convergence, it is sometimes necessary to rewrite this

as Δn+1
cl = (1 − w)F (Δn

cl) + wΔn
cl, where w is a complex number.

1.2 Dynamical Cluster Approximation

CDMFT performs a real space coarse graining of the dressed lattice self-energy expan-

sion. Only diagrams with support on a cluster are taken into account, and this naturally

identifies the self-consistent mapping on an impurity problem to sum up the diagrams.

The dynamical cluster approximation (DCA) [21, 20] performs a k-space coarse graining

to map the lattice problem on a cluster impurity problem with periodic boundary con-

ditions. For this, the lattice Brioullin zone is tiled into patches, and a K vector of the

reciprocal cluster space is associated with each patch RK. The lattice self-energy Σlatt(k)

is approximated as

Σlatt(k) ≈ ΣK for k ∈ RK, (1.15)

where ΣK is the cluster self-energy. With Dyson’s equation, the approximate lattice

Green function then reads

Glatt(iωn,k) ≈ 1

iωn + μ− ε(k) − ΣK(iωn)
for k ∈ RK. (1.16)

and is projected on the cluster Green function

GK =
1

vol(RK)

∫
RK

1

iωn + μ− ε(k) − ΣK(iωn)
dk (1.17)

by averaging over a patch.

As in CDMFT, equation (1.17) together with the impurity Dyson equation determines

the non-interacting part of the impurity Hamiltonian, that is

h0
K =

1

vol(RK)

∫
RK

ε(k)dk. (1.18)

In contrast to CDMFT however, this self-consistent mapping allows no natural derivation

from a truncation of the dressed lattice self-energy expansion, and the interacting part
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of the impurity problem which relates ΣK and GK still needs to be determined. Also,

there is an additional degree of freedom, namely the shape and location of the patches

in addition to the shape and size of the cluster.

Considering the limit of an arbitrarily large cluster suggests to choose a Hubbard term

for the interacting part of the cluster Hamiltonian with the same U as the lattice Hamil-

tonian. Also, considering this large cluster limit, it seems reasonable to center a patch

RK around its K vector, c.f. equation (1.18).



Chapter 2

Continuous Time Quantum Monte

Carlo Impurity Solvers

In practice, the quantum cluster methods presented in the previous chapter necessitate

the solution of an impurity problem. While the infinite and interacting lattice model

has been mapped on a simpler impurity problem with a finite interacting system, the

task of solving this impurity problem is still non trivial as the hybridization couples the

interacting system to the infinite, yet non-interacting, bath. While the Bethe-Ansatz

can give exact solutions for some impurity models, a general analytical solution is not

known, and approximate solvers such as the iterated perturbation theory [44] are not

always reliable [4]. Numerically, one is faced with an infinite-dimensional Hilbert space.

One possibility is to approximate the bath with a finite number of levels and to solve

this problem with exact diagonalization. The impurity Hilbert space grows exponentially

with the number of particles, and one is restricted to a few bath levels only. The problem

here is the memory requirement for storing a state of the system. Another possibility is

to cut the problem into simpler pieces which fit into memory, as in the quantum Monte

Carlo impurity solvers. In the Hirsch-Fey impurity solver [22], this is achieved with

a Hubbard-Stratonovitch transformation after discretizing the imaginary time. While

this solver allows an infinite number of bath levels, the time discretization introduces

systematic errors. The only impurity solvers up to date which allow an infinite number

of bath levels and give statically exact solutions are the continuous-time quantum Monte

Carlo (CT-QMC) impurity solvers [11].

In CT-QMC, the impurity Hamiltonian is split into two parts H = H0 + H1, and the

12
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impurity partition function Z = Tr exp(−βH) is written in interaction representation

with respect to H0 and expanded in powers of H1 as

Z = TrTτe
−βH0e−

∫ β
0 H1(τ)dτ

=
∑
k≥0

(−1)k
∫ β

0

dτ1 · · ·
∫ β

τk−1

dτkTrTτe
−βH0H1(τk) · · ·H1(τ1),

(2.1)

where H1(τ) = eτH0H1e
−τH0 . The thermal average of an observable

〈A〉 = Z−1TrA exp(−βH) (2.2)

is expanded similarly as

〈A〉 = Z−1
∑
k≥0

(−1)k
∫ β

0

dτ1 · · ·
∫ β

k−1

dτkTrATτe
−βH0H1(τk) · · ·H1(τ1). (2.3)

While different splittings of H are possible, they all include the non-interacting bath

in the Hamiltonian H0, and this makes the infinite number of bath levels numerically

accessible. A traditional choice is to put all interacting terms of the impurity Hamil-

tonian in H1. This is the starting point for the continuous-time interaction expansion

(CT-INT) impurity solver [35] and the continuous-time auxiliary field (CT-AUX) im-

purity solver. Alternatively, the impurity partition function is expanded in powers of

the hybridization between impurity and bath, as in the continuous-time hybridization

expansion (CT-HYB) impurity solver [38, 39, 15]. The choice between these depends on

the impurity problem under consideration.

Till now, we only replaced a memory problem with a complexity problem. The se-

ries in equation (2.1) and (2.3) involve high-dimensional integrals.

2.1 Monte Carlo Basics

One may try to calculate the integrals at given expansion order k by iterating a one

dimensional integration method of order n, for example a trapezoidal rule with n = 2.

Evaluating the function to integrate in M points, the error in one dimension scales as
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O(M−n). For a k-dimensional integral, there are only M1/k points left for a dimension,

and the error scales as O(M−n/k). Independent of the order of the one dimensional

integration method, the error at higher expansion orders becomes hard to control.

Monte Carlo integrators offers a way out of this problem, and in this view, it is convenient

to rewrite the expansion for the partition function (2.1) and observables (2.3) symbolically

as

Z =
∑
x

p(x) and 〈A〉 = Z−1
∑
x

A(x). (2.4)

What we are finally interested in is the thermal average of an observable. With Ap(x) :=

A(x)/p(x), this thermal average is rewritten as

〈A〉 = Z−1
∑
x

Ap(x)p(x), (2.5)

and with X a random variable with distribution p(x)/Z, interpreted as expectation value

〈A〉 = E[Ap(X)] (2.6)

of the random variable Ap(X). Drawing M samples x1,x2, . . . ,xM from this distribution

yields hence an estimate

〈A〉 ≈ 1

M

(
Ap(x1) + Ap(x2) + · · · + Ap(xM)

)
(2.7)

of the observable. Assuming the samples statistically independent, the error Δ of this

estimate is given by the variance of Ap(X) as

Δ =
√

Var[Ap(X)]/M, (2.8)

independent of the dimension. More precisely, the central limit theorem asserts that

these estimates converge in probability to a Gaussian distribution with mean 〈A〉 and

standard deviation Δ as M goes to infinity.

Rewriting the observable in equation (2.5) as a weighted sum is called importance sam-

pling. Compared to a direct sampling of the sum in equation (2.4), this reduces the

variance in equation (2.8) as the definition of Ap cancels out the exponential character of

A. In other words, the terms in the expansion of the observable are sampled according

to their weight in the thermal average.
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2.1.1 The Metropolis Hasting algorithm

For a Monte Carlo Integrator to be useful in practice, we need samples of a general dis-

tribution, whereas most random number generators only sample uniform distributions.

In one dimension, the inversion method directly maps a uniform distribution on a given

distribution, as long as the cumulative distribution function is easy to invert. High-

dimensional distributions as in equation (2.1) are best sampled with a Markov chain.

A Markov chain is a random walk x0 −→ x1 −→ · · · in configuration space, charac-

terized by the transition probability P (xn+1|xn) between two consecutive configurations.

Given the probability distribution pn(xn) at the step n, the probability distribution at

step n + 1 reads

pn+1(xn+1) =
∑
xn

P (xn+1|xn)pn(xn), (2.9)

and if the Markov-Chain converges, the stationary distribution p satisfies global balance

p(y) =
∑
x

P (y|x)p(x). (2.10)

The goal is now to find such a transition probability for a given target distribution p. A

sufficient, but not necessary condition for global balance is detailed balance

P (y|x)p(x) = P (x|y)p(y). (2.11)

Since the probability of going from state x to any state y is one, this implies

∑
x

P (y|x)p(x) =
∑
x

P (x|y)p(y) = p(y). (2.12)

A general solution of detailed balance is provided by the Metropolis-Hasting algorithm.

A new configuration y is proposed with probability Pprop(y|x), and accepted with prob-

ability Pacc(y|x). If the proposed configuration y is rejected, the old configuration x is

used again. With y �= x, the detailed balance condition for this transition probability

P (y|x) = Pacc(y|x)Pprop(y|x) implies

Pacc(y|x)

Pacc(x|y)
=

Pprop(x|y)p(y)

Pprop(y|x)p(x)
=: R(y,x), (2.13)
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where R(y,x) is the acceptance ratio, and is satisfied by Metropolis-Hasting choice

Pacc(y|x) = min(1, R(y,x)). (2.14)

For x = y, detailed balance is trivially satisfied. This algorithm allows to get samples xn

of a distribution which is only known upon a constant factor, in our case the partition

function Z.

The original formulation of Metropolis [32] has symmetric proposal probabilities

Pprop(x|y) = Pprop(y|x) and they cancel out in the acceptance ratio. Hasting [14] gener-

alized the algorithm to Pprop(x|y) �= Pprop(y|x).

2.1.2 Ergodicity

The Metropolis Hasting transition probability satisfies detailed balance for a given target

distribution. However, this does not guarantee that the Markov-Chain converges to the

target distribution.

A transition probability is irreducible if ∀x,y ∃m > 0 : Pm(y|x) > 0, that is any

state can be reached from any other state in a finite number of steps, and aperiodic if

the greatest common divisor of the set {m : Pm(x|x) > 0} is one for all configurations

x. Aperiodicity avoids any regular recurrences, and a transition probability with these

properties is called ergodic.1

For a finite configuration space, the Perron-Frobenius theorem states that the stationary

distribution of an ergodic transition probability is unique. In other words, the transition

probability matrix has a unique eigenvalue 1 and all other eigenvalues are smaller. Writ-

ing equation (2.9) with respect to the eigenbasis of the transition matrix shows that the

Markov chain converges exponentially fast to the target distribution, and the convergence

rate is given by the second biggest eigenvalue. The case of infinite configuration spaces

as in CT-QMC is more involved. Even if the eigenvector with eigenvalue 1 is unique,

there may be other eigenvalues arbitrarily close to 1, and the convergence is arbitrarily

slow.

1Irreducibility implies aperiodicity if P (x|x) > 0 for at least one x, that is verifying irreducibility is
usually enough for ergodicity.
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Two kind of ergodicity problems may hence be distinguished. One happens if the transi-

tion probability allows in principle to visit all the configuration space, but the time this

takes makes simulations impossible.

The other happens if the transition probability strictly does not allow to visit all the

configuration space. To avoid this, it is important to not only ensure that the pro-

posal probability allows one to connect any two configurations, but also that the weights

along a proposed path are finite. A simplified example therefore is a random walk on

a checker board. If all fields have finite weight, proposing updates by moving one field

in x or y direction is sufficient for ergodicity. If however all white fields have vanishing

weight, moving along the diagonals is necessary to visit all accessible states with nonzero

weight. Situations reminiscent of this simple example may happen when investigating

broken symmetries phases, as for example superconductivity, with CDMFT or DCA and

CT-HYB as impurity solver, see chapter 4.

2.1.3 Thermalization, Auto-correlation and Errors

The Markov Chain converges only asymptotically to the target distribution p, that is,

we only asymptotically sample the configuration space with the right frequency, and

observables should only be measured after a sufficiently large amount of thermalization

samples. The thermalization time depends on the observable but is always smaller than

the thermalization of the Markov-Chain itself, which is related to the second biggest

eigenvalue of the transition probability. Once the thermalization time is long enough,

disregarding further measurements does, at least statistically, not change the estimates

of the observables, an this may be used in practice to ensure a sufficient thermalization.

The samples generated by the Markov chain are correlated, and equation (2.8) underes-

timates the error. These correlations can be quantified by an integrated auto-correlation

time τA, which depends on the observable and enters the error estimate as

ΔA =
√

Var[A(X)](1 + 2τA)/M. (2.15)

This reduces the number of uncorrelated samples from M to M/(1 + 2τA).

In practice, a reliable way to estimate the error of correlated samples and hence the

integrated auto-correlation time is by binning. Starting from the initial sequence of

samples Ap(xi), we create a binned sequence A1
i := (Ap(x2i+1)+Ap(x2i))/2 by averaging
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over two consecutive entries. Iteratively repeating this procedure as Al+1
i := Al

2i+1 +Al
2i,

the sequences Al
i get less and less correlated with increased bin size 2l, while the average

is the same. The errors estimated with equation (2.8) increase thus with increased bin

size and saturate once the bin size is bigger than the correlation length, and this yields

the error estimate.

2.1.4 The Sign Problem

Until now we tacitly assumed the weights p to be positive. This is necessary to interpret

the terms of the partition function expansion as probability distribution p/Z. In classical

statistical mechanics, the thermal average of an observable is naturally interpreted as

expectation value of a random variable as the Boltzmann distribution is always positive.

In quantum mechanics, the analog representation involves the eigenvalues and eigenvec-

tors of the system. While the weights are then guaranteed to be positive, this means

that we already solved the problem. Choosing however another basis than the eigenbasis,

the weights may become negative. One reason for this is the Pauli principle. The wave

function changes sign if two fermions exchange their place. Another reason is related

with the coefficients in the system’s Hamiltonian, and may occur for bosonic systems as

well.

To illustrate this, we consider a simple example, spinless fermions fi hopping between

the sites 1,2 and 3 of a triangle with Hamiltonian

H = −(f †
1f2 + f †

2f3 + f †
3f1) + h.c. (2.16)

Taylor expansion of the partition function Z = Tre−βH yields2

Z = Tre−βH =
∑
k≥0

(−β)k

k!
TrHk =

∑
{i1···ik}

(−β)k

k!
〈i1|H|ik〉 · · · 〈i2|H|i1〉, (2.17)

where at each expansion order k we insert k sums over a complete set of basis states |i〉,
for example a site basis |n1 n2 n3〉 with nr the site r occupancy. In this basis, the weight

2This is stochastic series expansion.
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of a configuration {i1 · · · ik} at expansion order k reads

p =
(−β)k

k!
〈i1|H|ik〉 · · · 〈i2|H|i1〉

=
βk

k!
〈i1|f †

ak
fbk |ik〉 · · · 〈i3|f †

a2
fb2 |i2〉〈i2|f †

a1
fb1 |i1〉,

(2.18)

where the indices al and bl depend on the configuration. If two fermions exchange their

place during the evolution |i1〉 → |i2〉 → · · · → |ik〉 → |i1〉, the weight picks up a minus

sign. In the configuration {i1, i2, i3} = {|1 1 0〉, |1 0 1〉, |0 1 1〉} for example, the fermions

on the sites 1 and 2 exchange their place, and the weight is negative, e.g.

〈1 0 1|f †
3f2|1 1 0〉 = 〈0 1 1|f †

2f1|1 0 1〉 = 1 and 〈1 1 0|f †
1f3|0 1 1〉 = −1. (2.19)

This does not occur when replacing the spinless fermions by bosons, where the weights

are always positive.

Changing the sign of the Hamiltonian in equation (2.16), the series gets a sign-alternating

factor, and the bosonic system has a sign problem as well. We will encounter a similar

situation in the next section and focus here on the fermionic sign problem.

The standard way of dealing with a sign problem is to transfer the sign from the weight

to the observable

〈A〉 =

∑
c A(c)p(c)∑

c p(c)
=

∑
c signp(c)A(c)|p(c)|/Z ′∑

c signp(c)|p(c)|/Z ′ =
〈signA〉
〈sign〉 , (2.20)

and to sample with respect to the partition function Z ′ =
∑

c |p(c)| with positive weights.

Here, the sign has to be sampled as well to estimate an observable, and the relative error

Δsign/〈sign〉 in the sign estimate sets a lower bound on the error of the observable.

In the example above without sign-alternating factor, Z ′ is the partition function of the

corresponding hardcore boson problem and the ratio of the two partition functions Z/Z ′

is the average sign. Rewriting this ratio in terms of the free energy difference ΔF of the

fermionic and the bosonic system

Z

Z ′ = e−βΔF = 〈sign〉. (2.21)
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Estimating the sign with M samples, the error is

Δsign =
√

(〈sign2〉 − 〈sign〉2)/M =
√

(1 − e−2βΔF )/M ≈ 1/
√
M (2.22)

Having a sign problem means ΔF �= 0, and the number of samples Mε to achieve a given

precision ε = Δsign/〈sign〉 scales exponentially with the inverse temperature

Mε = e2βΔF/ε2 (2.23)

in this case.

In the study of strongly correlated electronic system, one is mainly interested in the low

temperatures properties, and the fermionic sign problem often sets severe restrictions on

Monte Carlo simulations in this context. Assuming that the free energy difference grows

linearly with the particle number, the sign problem scales exponentially bad with the

particle number as well. In other words, we are back to the initial problem.

One may ask if it is not always possible to choose a basis where the fermionic sign problem

does not occur. An eigenbasis does not count as solution as this would just replace the

problem by another exponentially hard one. In [36] it is shown that the sign problem is

NP-hard. That is, solving this problem would solve all NP problems, and is therefore

unlikely to happen. However, it is possible to find a basis which reduces the sign problem

for specific Hamiltonians, and we will encounter an example in the next section in the

context of the CT-INT impurity solver. In chapter 3 we show how the sign problem can

be minimized for the CT-HYB impurity solver.
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2.2 Interaction expansion

The interaction expansion or “Rubtsov” impurity solver (CT-INT) was the first of the

continuous-time quantum Monte Carlos impurity solvers [35]. The impurity problem

Hamiltonian H is split into an interacting and an non-interacting part, H1 and H0 re-

spectively. For a single site Hubbard impurity, the non-interacting part reads

H0 = −μ(n↑ + n↓) +
∑
σλ

(Vλd
†
σaσλ + V ∗

λ a
†
λσdσ) +

∑
σλ

ελa
†
σλaσλ, (2.24)

where d†σ and a†σλ create spin-σ on electrons on the impurity and the bath level λ respec-

tively. Expansion of the partition function in the Hubbard interaction term H1 = Un↑n↓
around H0 yields

Z = TrTτe
−βH0e−

∫ β
0 H1(τ)dτ

=
∑
k

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk(−U)kTre−βH0n↑(τk)n↓(τk) · · ·n↑(τ1)n↓(τ1),
(2.25)

with nσ = d†σdσ the spin-σ particle number operator. Since the non-interacting Hamilto-

nian is diagonal in spin space, the trace splits

Z = Z0

∑
k

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk(−U)k〈n↑(τk) · · ·n↑(τ1)〉0〈n↓(τk) · · ·n↓(τ1)〉0, (2.26)

and with Wick’s theorem, the average with respect to the non-interacting system 〈·〉0 :=

Z−1
0 Tr[e−βH0 ·] is expressed as sum over all contractions, e.g. at second order

〈nσ(τ2)nσ(τ1)〉0 = 〈d†σ(τ+2 )dσ(τ2)d
†
σ(τ

+
1 )dσ(τ1)〉0

= 〈d†σ(τ+2 )dσ(τ2)d
†
σ(τ

+
2 )dσ(τ1)〉0 + 〈d†σ(τ+2 )dσ(τ1)d

†
σ(τ

+
2 )dσ(τ2)〉0.

(2.27)

The weight of a contraction is determined as follows. Bringing the operator pairs d†σ(τ
+
j )

and dσ(τi) as defined by a contraction next to each other involves a permutation sign.

Replacing every d†σ(τ
+
j )dσ(τi) pair by the non-interacting Green function G0(τi − τ+j ),

their product times the permutation sign is the weight of a contraction. Mathematically,
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the sum over all contractions can hence be expressed as

〈nσ(τk) · · ·nσ(τ1)〉 =
∑
π∈Sk

sgn(π)〈d†σ(τ+π(k))dσ(τk)〉 · · · 〈d†σ(τ+π(1))dσ(τ1)〉

= DetDσ
k ,

(2.28)

where (Dσ
k)i,j := G0(τi − τ+j ). Figuratively, a weight (−U)kDetD↑

kDetD↓
k in the partition

function expansion is depicted by the sum of all Feynman diagrams for given interaction

vertices {τ1, . . . , τk}, as shown in figure (2.2).

The configuration space here is the set of all vertices {τ1, . . . , τk}. To sample the distri-

bution defined by the partition function series with a Metropolis-Hasting algorithm, one

may propose new configurations by adding or removing vertices. The summation of the

k!2 diagrams at order k by a determinant allows a numerically efficient calculation of the

Figure 2.1: All second order diagrams in the interaction expansion for a Hubbard im-
purity. Pink circles represent the interaction vertices and black lines the non-interacting
Green functions.

weights of a proposed configuration in O(k3). Without this efficient summation, one may

be tempted to sample the diagrams individually, expecting however a bad sign problem as

every fermionic loop of a diagram contributes a minus sign to its weight. The situation in

fact is worse: that is this series with positive weights does not converge (see appendix A).

Similar to the simple example of the previous chapter, two sign problems can happen

here. One is a fermionic sign problem when the product of the determinants becomes

negative. If the non-interacting Green function is paramagnetic, as assumed here, the

spin up and down averages are identical, and the fermionic sign problem is absent.

The other comes from a sign alternating factor (−U)k if the Hubbard interaction U > 0

is repulsive. While this is a “trivial” sign problem, as not originating from fermionic

exchange, it needs to be fixed. The trick here is to go the opposite way of Feynman in
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some sense, that is the diagrammatic space is enlarged by introducing an auxiliary field

[35].

2.2.1 The auxiliary field

Performing a particle-hole transformation on the spin down electrons involves a sign

change of the Hubbard interaction U → −U and a shift in the chemical potential μ →
U − μ for the spin down electron on the impurity. For a repulsive Hubbard interaction,

the alternating sign factor is then absent when expanding in the interaction term of

the transformed Hamiltonian. However, the particle-hole transformation breaks the spin

symmetry of the original Hamiltonian, and a fermionic sign problem may enter. For a

single site Hubbard impurity, it can be shown by going along the lines of [43] that the

determinants are separately positive. The idea is to map the impurity Hamiltonian on

an open ended chain, for each spin separately [41]. The electrons on these chains can

only hop between neighboring sites, or in other words, they can not exchange their place.

At least for a single-site impurity, the sign problem is thus absent after a particle-hole

transformation. However, the spin up and down electrons are not treated on equal footing

in this expansion, and restoring the spin symmetry of the untransformed Hamiltonian

dynamically by the Monte Carlo sampling may be challenging.

Rewriting the transformed Hamiltonian in the original basis, the Hubbard interaction

term reads Un↑(n↓ − 1), and the spin down average at expansion order k

(−U)k〈n↑(τk) · · ·n↑(τ1)〉0 × 〈(n↓(τk) − 1) · · · (n↓(τ1) − 1)〉0 (2.29)

compensates thus the alternating sign factor (−U)k. One may ask if this holds also for

a weight where some of the spin up and down terms are exchanged, as for example in

〈n↑(τ3)(n↑(τ2) − 1)n↑(τ1)〉0 × 〈(n↓(τ3) − 1)n↓(τ2)(n↓(τ1) − 1)〉0. (2.30)

Using the ideas in [43], this proves to be true. With this observation in mind, the impurity

Hamiltonian is decomposed as H = H̃0 + H̃1 where

H̃1 =
U

2
n↑(n↓ − 1) +

U

2
(n↑ − 1)n↓ =

U

2

∑
s

(n↑ − α↑,s)(n↓ − α↓,s) (2.31)
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and α↑,↑ = α↓,↓ = 1 while α↑,↓ = α↑,↓ = 0. With this decomposition, the partition

function expansion reads

Z =
∑
k

∑
s1···sk

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk

(
−U

2

)k

〈((n↑(τk) − α↑sk) · · · (n↑(τ1) − α↑s1)〉0

× 〈(n↓(τk) − α↓sk) · · · (n↓(τ1) − α↓s1)〉0.
(2.32)

Each term in this series is positive, and the non-interacting Hamiltonian

H̃0 = H0 +
U

2

∑
s

α↓,sn↑ + α↑,sn↓ = H0 +
U

2
(n↑ + n↓) (2.33)

conserves spin symmetry. The price for this positive series is an enlarged configuration

space with and auxiliary field ασs to sum over. Diagrammatically, each interaction vertex

gets an additional label, the auxiliary spin s.

The expansion in equation (2.32) is easily generalized to a cluster impurity model. La-

beling a site with r, replace nσ → nrσ and ασs → ασrs, and sum over r as well. With

G̃0
rr′ the non-interacting Green function of the cluster impurity, the average 〈(nσ(τk) −

ασs1) · · · (nσ(τ1)−ασs1)〉0 at expansion order k is given by the determinant of the matrix

D̃σ
k :=

⎛
⎜⎜⎝

G̃r1r1(0
−) − ασs1r1 · · · G̃r1rk(τ1 − τ+k )

...
. . .

...

G̃rkr1(τk − τ+1 ) · · · G̃rkrk(0
−) − ασskrk

⎞
⎟⎟⎠ . (2.34)

Here, a fermionic sign problem may occur as the determinants are not anymore separately

positive as for the single site impurity. This is reflected in the fact that the hybridization

with the bath can generally not be mapped on a chain for each site and spin separately

in case of a cluster impurity model. However, as without the auxiliary field, the sign

problem stays absent for a particle-hole symmetric impurity problem. Without auxiliary

field, odd expansion orders vanish here and this avoids a sign problem from the repulsive

interaction. With auxiliary field, the non-interacting Green function is particle-hole

symmetric, that is G̃0
rr′(τ) = −G̃0

r′r(−τ). Since G̃rr(0
−) − α↑sr = α↓sr − G̃rr(0

−) in this

case, the matrices for up and down spins are related by D̃↑
k = −(D̃↓

k)
T , and the product

of the spin averages DetD̃↑
kDetD̃↓

k = (−1)k(DetD̃↑
k)

2 is sign alternating and compensates

the sign coming from (−U/2)k. It is of course better to not use an auxiliary field in case
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of a particle-hole symmetry, as this would unnecessarily enlarge the configuration space.

However, the sign problem being absent with the auxiliary field in this case, there is hope

that when staying close, by a small doping for example, the sign problem is not to severe.

To avoid nearly singular matrices when calculating the determinant, an auxiliary field as

α↑,↑r = α↓,↓r = 1+ δ and α↑,↓r = α↑,↓r = −δ is advisable with δ slightly bigger than 0, for

example 0.05.

2.2.2 Partition function sampling

Including the auxiliary field and the sites, a configuration ck at expansion order k is

defined by {τ1s1r1 · · · τkskrk}, and the series is symbolically written as

Z =
∑
k≥0

∑
ck

(
−U

2

)k

DetD̃↑
k(ck)D̃

↓
k(ck)

k∏
i=1

dτi, (2.35)

with D̃σ
k(ck) as defined by equation (2.34).

To sample this series with the Metropolis-Hasting algorithm, a simple choice is to propose

a new configuration by inserting or removing a vertex from a configuration ck.

To insert a vertex, randomly pick an auxiliary spin s =↑ or ↓ and a site r among the N

sites. Choosing the imaginary time τ uniformly between 0 and β, the proposal probability

for inserting a vertex is

Pprop(ck+1|ck) =
dτ

2Nβ
, (2.36)

Choosing the vertex to remove uniformly among the vertices at expansion order k, the

proposal probability reads

Pprop(ck−1|ck) =
1

k
. (2.37)

For detailed balance, the acceptance probability of the proposed configuration has to be

calculated. The probability to remove the inserted vertex from the configuration ck+1 is

1/(k + 1). The weight of the configuration ck+1 has an additional dτ compared to the

weight of ck, and this infinitesimal cancels in the acceptance probability

Pacc(ck+1|ck) =

∣∣∣∣NUβ

k + 1

DetD̃↑
k+1(ck+1)D̃

↓
k+1(ck+1)

DetD̃↑
k(ck)D̃

↓
k(ck)

∣∣∣∣, (2.38)
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with the dτ coming from the proposal probability for the inserted vertex. The acceptance

probability for removing is

Pacc(ck−1|ck) =

∣∣∣∣ k

NUβ

DetD̃↑
k−1(ck−1)D̃

↓
k−1(ck−1)

DetD̃↑
k(ck)D̃

↓
k(ck)

∣∣∣∣, (2.39)

and these two updates are in principle sufficient for an ergodic sampling of the diagram-

matic space. It is convenient here to propose a removal even at expansion order zero,

otherwise the formulas (2.38) and (2.39) change at k = 1 and 0 respectively. Additional

updates such as flipping the auxiliary spin of a vertex may reduce the auto-correlation

time.

Removing the i’th vertex from a configuration ck, the matrix D̃σ
k−1 is obtained from the

matrix D̃σ
k by removing the i’th row and column. Using Cramer’s rule, the ratio of their

determinants is related with the inverse Mσ
k of D̃σ

k as

DetD̃σ
k−1

DetD̃σ
k

= (Mσ
k)i,i. (2.40)

For the ratio of the determinants in the acceptance probability, applying twice the Laplace

formula along the row and column of the inserted vertex τsr yields

DetD̃σ
k+1

DetD̃σ
k

= G̃0
rr(0

−) − ασsr −
∑

1≤i,j≤k

G̃0
rri

(τ − τ+i )(Mσ
k)i,jG̃0

rjr
(τj − τ+). (2.41)

These formulas allow to calculate the acceptance ratios in O(1) for removal and O(k2)

for insertion, starting from the inverse Mσ
k . If the update is accepted, the inverses of the

proposed D̃σ
k±1 are obtained from Mσ

k with the Sherman-Morrison [1] formula in O(k2).

That is, storing the inverse matrices during the Monte-Carlo simulation, the numerical

effort for a Metropolis-Hasting step is reduced from O(k3) to O(k2).

2.2.3 Observables

The central quantity in the quantum cluster approaches is the Green function Gσrr′(τ −
τ ′) = −Z−1TrTτe

−βHdσr(τ)d†σr(τ
′). Compared to the partition function expansion, a
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weight in the Green function expansion

Gσrr′(τ − τ ′) = −Z−1
∑
k

∑
r1...rk

∑
s1...sk

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk(−U)k〈dσr(τ)d†σr′(τ
′)

× (n↑rk(τk) − α↑skrk)(n↓(τk) − α↓skrk) · · · (n↑(τ1) − α↑s1r1)(n↓(τ1) − α↓s1r1)〉0
(2.42)

has two additional operators dσr(τ) and d†σr′(τ
′). Using Wick’s theorem, the spin average

containing the inserted operators is expressed as determinant of the matrix

G̃σ
k(ck; rτ, r

′τ ′) :=

⎛
⎜⎜⎜⎜⎝

G̃0
rr′(τ − τ ′) G̃rr1(τ − τ+1 ) · · · G̃rrk(τ − τ+k )

G̃r1r′(τ1 − τ ′) G̃r1r1(0
−) − ασs1rk · · · G̃r1rk(τ1 − τ+k )

...
...

. . .
...

G̃rkr′(τk − τ ′) G̃rkr1(τk − τ+1 ) · · · G̃rkrk(0
−) − ασskrk

⎞
⎟⎟⎟⎟⎠ ,

(2.43)

obtained from D̃σ
k(ck) by inserting a row and a column for τr and τ ′r′, and the Green

function series is compactly rewritten as

Gσrr′(τ − τ ′) = Z−1
∑
k≥0

∑
ck

(
−U

2

)k

DetG̃σ
k(ck; τr, τ

′r′)D̃σ
k(ck)

k∏
i=1

dτi. (2.44)

To collect measurements during the partition function sampling, this expression is cast as

expectation value of a random variable with respect to the partition function distribution

as outlined in (2.5)

Gσrr′(τ − τ ′) = Z−1
∑
k≥0

∑
ck

DetG̃σ
k(ck; τr, τ

′r′)
DetD̃σ

k(ck)

(
−U

2

)k

D̃↑
k(ck)D̃

↓
k(ck)

k∏
i=1

dτi. (2.45)

Using the Laplace formula as in (2.41), the Green function is estimated by (lower case is

used to differentiate an estimator from the actual quantity)

gσ(ck; τr, τ
′r′) := G̃0

rr′(τ − τ ′) −
∑

1≤i,j≤k

G̃0
rri

(τ − τ+i )(Mσ
k)i,jG̃0

rjr′(τj − τ ′). (2.46)

This estimator depends on two imaginary times, while the definition of the Green function

depends on τ − τ ′ only. Measurements may be taken by evaluating this estimator on

an imaginary time grid, for example by fixing τ = 0 and binning with respect to τ ′.

However, this way information gets lost, and varying both τ and τ ′ is expensive. Fourier
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transforming the Green function estimator

gσ(ck; iωn, rr
′) := G̃0

rr′(iωn) − β−1
∑

1≤i,j≤k

G̃0
rri

(iωn)e
iωn(τ

+
i −τj)(Mσ

k)i,jG̃0
rjr′(iωn) (2.47)

and taking measurements in Matsubara frequencies avoids this problem [35] . Also,

noise at high frequencies is suppressed by measuring a T-matrix rather than the Green

function itself. Here, evaluating the exponentials eiωn(τi−τj) is expensive, and we refer to

appendix B for details. Notice here that the spatial multiplications in equation (2.47)

can be postponed by defining the estimator

mσ(ck; iωn, rr
′) =

∑
{ij | ri=r,rj=r′}

eiωn(τ
+
i −τj)(Mσ

k)i,j. (2.48)

In DCA for example, translational invariance can be used to reduce the memory require-

ment for storing these estimates. Other observables such as the filling or susceptibilities

are measured similarly.



Chapter 2 : Continuous Time Quantum Monte Carlo Impurity Solvers 29

2.3 Hybridization expansion

The CT-INT impurity solver is well suited for a simple interaction term as in the Hubbard

model. For more complex interactions as arising for example from the Hund term in an

atomic Hamiltonian, the sign problem may become severe. In the hybridization expansion

impurity solver (CT-HYB) [38, 39, 15], the impurity model partition function is expanded

in the hybridization between the impurity and the bath. Hence the interaction terms on

the impurity are treated exactly and do not explicitly enter into the expansion as in the

CT-INT solver, and this makes the CT-HYB solver also well suited for strong interactions.

The partition function expansion in the hybridization is more involved than the expansion

in the interaction, and we begin here again with the single site Hubbard impurity.

2.3.1 Single Site Impurity

To start with, the single site Hubbard impurity Hamiltonian (1.4) is rewritten as

H = Hloc +
∑
σ

(d†σV̂σ + V̂ †
σ dσ) + Hb, (2.49)

where Hloc = −μ(n↑ + n↓) + Un↑n↓, Hb =
∑

σκ εκa
†
σκaσκ and V̂σ =

∑
κ Vκaσκ. Setting

Hhyb =
∑

σ d
†
σV̂σ, the partition function is expanded in H1 = Hhyb + H†

hyb around H0 =

Hloc + Hbath as

Z = TrTτe
−βH0e−

∫ β
0 Hhyb(τ)+H†

hyb(τ)dτ

=
∑
k≥0

∫ β

0

dτ1 · · ·
∫ β

0

dτ2k
1

(2k)!
TrTτe

−βH0
(
(Hhyb(τ2k) + H†

hyb(τ2k)) · · ·

· · · (Hhyb(τ1) + H†
hyb(τ1))

)
.

(2.50)

Since the impurity conserves particle number, odd expansion orders vanish and there are

(2k)!/k!2 finite terms when multiplying out the product. All of these terms yield the

same contribution to the partition function after integration over imaginary time. Fixing

their order

Z =
∑
k≥0

∫ β

0

dτ1 · · ·
∫ β

0

dτ2k
1

k!2
TrTτe

−βH0
(
Hhyb(τ2k)H

†
hyb(τ2k−1)

Hhyb(τ2)H
†
hyb(τ1))

)
,

(2.51)
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and replacing the hybridizations one finds

Z =
∑
k≥0

∑
σ1···σk

∑
σ′
1···σ′

k

∫ β

0

dτ1 · · ·
∫ β

0

dτk

∫ β

0

dτ ′1 · · ·
∫ β

0

dτ ′k
1

k!2

× TrTτe
−βH0V̂ †

σk
(τk)dσk

(τk)d
†
σ′
k
(τ ′k)V̂σ′

k
(τ ′k) · · · V̂ †

σ1
(τ1)dσ1(τ1)d

†
σ′
1
(τ ′1)V̂σ′

1
(τ ′1).

(2.52)

Since the impurity separately conserves spin up and down particles, only configuration

with the same number kσ of dσ and d†σ operators are finite. For given k↑ and k↓, there

are k!2/(k↑!k↓!)2 terms yielding the same contribution to the trace after integration over

imaginary time, and fixing again their order,

Z =
∑
kσ≥0

∏
σ

∫ β

0

dτσ1 · · ·
∫ β

0

dτσkσ

∫ β

0

dτ ′σ1 · · ·
∫ β

0

dτ ′σkσ
1

kσ!2

× TrTτe
−βH0

∏
σ

V̂ †
σ (τkσ)dσ(τkσ)d

†
σ(τ

′
kσ)V̂σ(τ

′
kσ) · · · V̂ †

σ (τ1)dσ(τ1)d
†
σ(τ

′
1)V̂σ(τ

′
1).

(2.53)

Separating finally the bath and the impurity degrees of freedom,

Z = Zbath

∑
kσ≥0

∏
σ

∫ β

0

dτσ1 · · ·
∫ β

τσkσ−1

dτσkσ

∫ β

0

dτ ′σ1 · · ·
∫ β

τσkσ−1
′
dτ ′σkσ

× Tr[Tτe
−βHloc

∏
σ

dσ(τ
σ
kσ)d

†
σ(τ

′σ
kσ) · · · dσ(τσ1 )d†σ(τ

′σ
1 )]loc

×
∏
σ

〈V̂ †
σ (τσkσ)V̂σ(τ

′σ
kσ) · · · V̂ †

σ (τσ1 )V̂σ(τ
′σ
1 )〉b,

(2.54)

where 〈O〉b = Z−1
b Tr[Tτe

−βHbO].

With Wick’s theorem, the average over the non-interacting bath is expressed as

〈V̂ †
σ (τσkσ)V̂σ(τ

′σ
kσ) · · · V̂ †

σ (τσ1 )V̂σ(τ
′σ
1 )〉b =

∏
π∈Skσ

sgn(π)〈V̂ †
σ (τπ(1))V̂σ(τ

′σ
1 )〉b · · ·

· · · 〈V̂ †
σ (τσπ(kσ))V̂σ(τ

′σ
kσ)〉b = DetΔσ

kσ ,

(2.55)

where we recover the hybridization function

Δ(iωn) =
∑
κ

|Vκ|2
iωn − εκ

(2.56)
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defining (Δσ
kσ

)ij := Δ(τ ′σi − τσj ).

The configuration space consists of all sequences {τσ1 . . . τσkσ ; τ
′σ
1 . . . τ ′σkσ}σ and the weight

of a configuration c is

p(c) := Tr[Tτe
−βHloc

∏
σ

dσ(τ
σ
kσ)d

†
σ(τ

′σ
kσ) · · · dσ(τσ1 )d†σ(τ

′σ
1 )]loc

×
∏
σ

DetΔσ
kσ(τ

σ
1 . . . τσkσ ; τ

′σ
1 . . . τ ′σkσ).

(2.57)

The trace factor represents the impurity with particles hopping in and out at imaginary

times τ ′ and τ , and the determinant sums up all compatible hybridization events with

the bath. In the impurity basis (|0〉, | ↑〉, | ↓〉, | ↑↓〉) the local Hamiltonian is diagonal.

That is, the imaginary time evolution does not mix the impurity states, and the creation

and annihilation operators for given spin have to alternate for the trace to be finite. If

τ ′↑3 τ↑2 τ ′↑2 τ ′↑1τ↑1 τ↑3

τ↓2 τ ′↓2 τ↓1 τ ′↓1
β 0

Figure 2.2: Segment representation of a configuration in the hybridization expansion
of a single site Hubbard impurity at expansion order k↑ = 3 and k↓ = 2. Dashed and
bold lines represent unoccupied and occupied spin-orbitals respectively. The overlapping
regions between spin up and down segments are shown by green boxes. Here the Hubbard
interaction enters as both spin-orbitals are occupied.

the configuration contains at least two operators for each spin, only one impurity state

contributes to the trace. This allows to represent a configuration by a collection of seg-

ments, see figure (2.2), connected in all possible ways by the hybridization function. The

elements of e−ΔτHloc in the above basis read (1, eμΔτ , eμΔτ , e2μΔτ−UΔτ ), and the propaga-

tors between the creation and annihilation operators add a factor of elμ for a segment

with length l to the trace. The total overlap o between the segments adds factor of e−Uo,

and with lσ the total length of all spin-σ segments, the value of the trace is

Tr[Tτe
−βHloc

∏
σ

dσ(τ
σ
kσ)d

†
σ(τ

′σ
kσ) · · · dσ(τσ1 )d†σ(τ

′σ
1 )]loc = s

k↑
↑ s

k↓
↓ · eμ(l↑+l↓)−Uo. (2.58)
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The sign sσ is minus one if the last spin-σ segment winds around from β to 0 as for

spin up in figure 2.2, and one otherwise. This originates from the time-ordering of the

impurity operators.

Partition function sampling

To sample the configuration space, one may propose a new configuration by inserting or

removing a segment. To insert a segment, begin by randomly choosing a spin-σ anti-

segment. This offers a place to insert a segment, and picking uniformly two imaginary

times τ and τ ′ in this anti-segment defines the segment to insert. With l the length of

the anti-segment, the proposal probability at expansion order kσ reads3

Pprop =
dτdτ ′

2l2kσ
. (2.59)

Choosing a segment to remove randomly among the spin-σ segments at expansion order

kσ, the proposal probability is

Pprop =
1

kσ
. (2.60)

With l′ = |τ−τ ′| the length of the segment to insert and o the overlap of this segment with

the opposite spin segments, the ratio of the traces entering the acceptance probability

is eμl
′−oU . The matrix Δσ

kσ+1 of the proposed configuration has an additional row and

column for the inserted imaginary times and the probability to insert the segment is

Pacc =

∣∣∣∣kσ + 1

2l2kσ
eμl

′−oU DetΔσ
kσ+1

DetΔσ
kσ

∣∣∣∣. (2.61)

The case of removal is analogue, and the efficient formulas for calculating the ratio of

determinants presented in section (2.2.3) apply here as well.

Care has to be taken at expansion order kσ = 0 for insertions and kσ = 1 for removal.

Apart from the proposal probabilities which need to be adapted, the expression for the

ratio of the traces changes, as more than one state contribute in this case. Additional

updates such as insertion and removal of an anti-segment or shift of a segment may reduce

the auto-correlation time.

3There are two imaginary time pairs τ, τ ′ and τ ′, τ yielding the same segment.
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Green’s function and Observables

To measure the Green function, one may begin as in equation (2.42) by putting two

additional impurity operators in each partition function configuration. Trying however

to recover the partition function configuration space as in equation (2.5) fails. A configu-

ration where the two additional operators are removed may have zero weight, due to the

fact that the the creation and annihilation operators have to alternate for a finite trace.

Here, we start by writing the equation of motion for the two-point correlation func-

tion Fσ(τ
′ − τ) := 〈V̂ †

σ (τ)V̂σ(τ
′)〉 [15], where the average is taken with respect to the

impurity model Hamiltonian. In Matsubara frequencies this yields

Fσ(iωn) = Δ(iωn) + Δ(iωn)Gσ(iωn)Δ(iωn), (2.62)

where Gσ(iωn) is the impurity Green function. In contrast to the impurity Green function,

the correlation function F can be measured by following the lines of section (2.2.3), and

the estimator reads

fσ(c; iωn) := Δ(iω) − β−1
∑

1≤i,j≤kσ

Δ(iωn)e
iωn(τσi −τ ′σj )(Mσ

kσ)i,jΔ(iωn), (2.63)

where Mσ
kσ

denotes the inverse of Δσ
kσ

. Comparing this equation with equation (2.62)

then identifies the Green function estimator as

gσ(c; iωn) = −β−1
∑

1≤i,j≤kσ

eiωn(τσi −τ ′σj )(Mσ
kσ)i,j. (2.64)

Another way of measuring the Green function starts by writing the equation of motion

for Gσ(τ), as presented in [13].

The total particle number N and the total spin-z component Sz commute with the

impurity Hamiltonian. Inserting these observables in the trace and integrating from 0 to

β yields the estimators N = (l↑ + l↓)/β and Sz = (l↑ − l↓)/(2β) respectively, where lσ is

the total length of the spin-σ segments. The total overlap of the segments is an estimator

for the double occupancy.

In the context of DMFT, the average expansion order 〈k〉 is related to the kinetic energy
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per site as [15]

Ekin = −〈k〉/β. (2.65)

Indeed, the kinetic energy per site in DMFT reads

Ekin =
1

2π2

∑
n

eiωn0+
∫

dkε(k)Glatt(iωn,k)

=
1

2π2

∑
n

eiωn0+
∫

dk(iωn + μ− Σimp −Glatt(iωn,k)−1)Glatt(iωn,k)

= 2
∑
n

eiωn0+((iωn + μ− Σimp)Gimp(iωn) − 1)

= 2
∑
n

eiωn0+Δ(iωn)Gimp(iωn).

(2.66)

On the other side, the equation of motion yield

Z−1Tr[e−βHHhyb] = 2
∑
n

eiωn0+Δ(iωn)Gimp(iωn), (2.67)

and this proves equation (2.65) as Z−1Tr[e−βHimpHhyb] = −〈k〉/β.

2.3.2 Multi Orbital Impurity

The generalization of the hybridization expansion impurity solver to a multi-orbital im-

purity problem depends on the form of the local Hamiltonian. For a local Hamiltonian

of the form

Hloc =
∑
iσ

(εiσ − μ)niσ +
∑
iσ,i′σ′

Uiσ,i′σ′niσni′σ′ , (2.68)

which individually conserves each electron on the impurity, the situation is very similar

to the previous section, and we begin here with this case [39]. Such a Hamiltonian is for

example obtained by neglecting the terms of an atomic impurity necessary for the SU(2)

invariance.

A general multi-orbital impurity Hamiltonian can be cast in the form

H = Hloc +
∑
iσ

(d†iσV̂iσ + V̂ †
iσdiσ) + Hb, (2.69)
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where Hb =
∑

λ ελa
†
λaλ and V̂iσ =

∑
λ Viσλaλ.

4 For a local Hamiltonian as in equation

(2.68), individually conserving each spin σ and orbital i, the derivation from equation

(2.50) to equation (2.54) with the replacement σ → iσ applies here as well, and 5

Z = Zbath

∏
iσ

∑
kiσ≥0

∫ β

0

dτ iσ1 · · ·
∫ β

τ iσkiσ−1

dτ iσkiσ

∫ β

0

dτ ′iσ1 · · ·
∫ β

τ ′iσkiσ−1

dτ ′iσkiσ

× Tr[Tτe
−βHloc

∏
iσ

diσ(τ
iσ
kiσ

)d†iσ(τ
′iσ
kiσ

) · · · diσ(τ iσ1 )d†iσ(τ
′iσ
1 )]loc

× 〈
∏
iσ

V̂ †
iσ(τ

iσ
kiσ

)V̂iσ(τ
′iσ
kiσ

) · · · V̂ †
iσ(τ

iσ
1 )V̂iσ(τ

′iσ
1 )〉b.

(2.70)

With Wick’s theorem the bath average is expressed as

〈
∏
iσ

V̂ †
iσ(τ

iσ
k )V̂iσ(τ

′iσ
k ) · · · V̂ †

iσ(τ
iσ
1 )V̂iσ(τ

′iσ
1 )〉b = Det

⎛
⎜⎜⎝

Δ1↑,1↑ · · · Δ1↑,i↓
...

. . .
...

Δf↓,1↑ · · · Δf↓,f↓

⎞
⎟⎟⎠ , (2.71)

where f is the number of orbitals. The block matrix elements read (Δi′σ′,iσ)lm :=

Δi′σ′,iσ(τ
′i′σ′
l − τ iσm ) with hybridization function

Δi′σ′,iσ(iω) =
∑
λ

Vi′σ′λV
∗
iσλ

iωn − ελ
. (2.72)

If the hybridization function is diagonal in orbital and spin, this determinant splits into

a product of determinants
∏

iσ DetΔiσ,iσ. In this case the hybridization with the bath

can be mapped on chains for each iσ individually. Since the electrons are non-itinerant

on the impurity, the expansion in equation (2.70) is sign-problem free for a diagonal

hybridization. If the hybridization is non-diagonal, as for example for a three-band Hub-

bard model within CDMFT, a sign problem may enter.

A configuration in this expansion is represented by a collection of segments for spin

4We assume here particle number conservation.
5Here, there are k!2/

∏
iσ kiσ!

2 terms when going from equation (2.52) to equation (2.53).
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and orbital, similar to the previous section. The trace evaluates to

Tr[Tτe
−βHloc

∏
iσ

diσ(τ
iσ
k )d†iσ(τ

′iσ
k ) · · · diσ(τ iσ1 )d†iσ(τ

′iσ
1 )]loc =

(∏
iσ

skiσiσ

)
exp(−

∑
iσ

(εiσ − μ)liσ −
∑

iσ 	=i′σ′
Uiσ,i′σ′oiσ,i′σ′)

(2.73)

with liσ the total length of the iσ segments and oiσ,i′σ′ the total overlap of iσ and i′σ′

segments. The sign siσ is -1 if the last iσ segment winds around.

The formula in equation (2.64) for measuring the Green function is easily extended to

hybridizations with off-diagonal blocks. Observables involving density terms only, such

as the filling or the charge susceptibility, are estimated by the lengths and overlaps of the

segments. The sampling closely follows the previous section, except that now an orbital

index i has to be proposed besides the spin. Insertion and removal of segments is in

principle always ergodic here, see chapter 4.

The segment representation allows a very efficient calculation of the trace and observ-

ables. While the impurity Hilbert space grows exponentially with the number of orbitals

f as 4f , the numerical effort in the segment picture scales as O(f 2) only (see the last term

of equation (2.73)). If the local Hamiltonian can not be cast into the form of equation

(2.69), as for example in the presence of a Hund term, the segment picture breaks down

as the iσ occupation number basis is not anymore the eigenbasis. When writing the trace

with respect to the occupation number basis, the time evolution between the impurity

operators mixes the states, and in the eigenbasis {|m〉, Em} of the local Hamiltonian the

operators become dense matrices.

One possibility to calculate the trace is to use the occupation number basis and to ap-

proximate the time evolution with a Lanczos method [28], the other possibility is to

take the eigenbasis [15]. Writing the impurity operators with respect to the eigenbasis

Fm′,m = 〈m′|d(†)|m〉, the trace at expansion order k reads

∑
m2k···m3,m2,m1

Tre−(β−τ2k)Em1F 2k
m1,m2k

e−(τ2k−τ2k−1)Em2k · · ·

· · · e−(τ3−τ2)Em3F 2
m3,m2

e−(τ2−τ1)Em2F 1
m2,m1

e−τ1Em1

(2.74)

and involves matrix multiplications. The impurity Hilbert spaces of a four and five

orbital system have dimension 256 and 1024 respectively. Multiplying these matrices



Chapter 2 : Continuous Time Quantum Monte Carlo Impurity Solvers 37

at each Metropolis-Hasting step to calculate the weight of the proposed configuration is

expensive.

Progress can be made by using symmetries of the impurity Hamiltonian [15], as we shall

now illustrate.

Symmetries

For a local Hamiltonian conserving individually each electron, the matrices Fm,n connect

an eigenstate |n〉 with exactly one other eigenstate |m〉 or with 0. For given m1 and given

operator sequence in equation (2.74), there is thus only one sequence of m2,m3 · · ·m2k

which may yield a finite contribution to the trace, and this leads to the segment picture.

For a general impurity Hamiltonian such as

H =
∑
iσjσ′

tiσjσ′d†iσdjσ′ +
∑

iσ1jσ2kσ3lσ4

Uiσ1jσ2kσ3lσ4d
†
iσ1

d†jσ2
dkσ3dlσ4 , (2.75)

conserving total particle number N , the matrices F keep a similar structure. Regrouping

the eigenstates of this Hamiltonian according to the quantum number N as |N,m〉, the

matrix elements 〈N ′,m′|d†σi|N,m〉 of a creation operator are finite only when N ′ = N+1.

Instead of connecting respectively two impurity states as in the segment picture, the

operators here connect two sub-spaces with particle number N and N ′. If N ′ is greater

than the maximum number of electrons admitted on the impurity, the matrix elements

F [N ]m′,m := 〈N ′,m′|d(†)σi |N,m〉 vanish by the Pauli principle. The trace in (2.74) splits

into a sum over the subspaces as

∑
N1

∑
{mi}

TrN1e
−(β−τ2k)Em1F 2k[N2k]m1,m2k

e−(τ2k−τ2k−1)Em2k · · ·

· · · e−(τ3−τ2)Em3F 2[N2]m3,m2e
−(τ2−τ1)Em2F 1[N1]m2,m1e

−τ1Em1 ,

(2.76)

where consecutive quantum numbers are related by Nl+1 = Nl ± 1, depending on when

F i is a creation or an annihilation operator. The contribution to the trace for given N1

vanishes if an Nl falls out of the Hilbert space, and the sum is restricted to the finite

contributions only. Including other symmetries such as the total spin Sz further reduces

the size of the matrices.

To obtain a basis |N,Sz,m〉 of common eigenvectors of N , Sz and Hloc, one may begin
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by classifying the states in the occupation number basis

(d†↑1)
n↑1 · · · (d†↑f )n↑f (d†↓1)

n↓1 · · · (d†↓f )n↓f |0〉 (2.77)

according to their N =
∑

i n↑i + n↓i and 2Sz =
∑

i n↑i − n↓i quantum numbers. The

impurity Hamiltonian written with respect to this basis becomes a block-diagonal matrix,

and diagonalizing a block with quantum numbers N and Sz yields |N,Sz,m〉. An abelian

spatial symmetry G is included in the same way by first choosing a one-particle basis

which transforms as the irreducible representations of G. For the translation symmetry,

these irreducible representations are labeled by the momentum K, and a state d†↑K1
d†↑K2

|0〉
has quantum numbers N = 2, Sz = 1 and K = K1 + K2. Another possibility is to first

diagonalize the full Hamiltonian and then classify the eigenvectors according to their

quantum numbers. However, first identifying the sub-spaces makes it is easier to obtain

the block-operators.

With this decomposition of the trace, the size of the biggest matrix which needs to be

multiplied is usually much smaller than dimension of the Hilbert space. Using the N ,

Sz and K quantum numbers for a Hubbard 2x2 cluster, the size of the biggest sub-space

is 12. For a 7-orbital Kanamori Hamiltonian, the biggest sub-space has dimension 35,

while the Hilbert space has dimension 16384. For an additional speedup, see chapter 5.

General expansion and Observables

In the previous hybridization expansions, it is possible to restrict the summation when

going from equation (2.52) to equation (2.53) as the impurity Hamiltonian individually

conserves each charge, and configurations where the number of diσ and d†iσ differ for some

iσ have a vanishing trace. For a general impurity Hamiltonian as in equation (2.75), such

configurations are generally finite. However, a similar restriction of the summation is pos-

sible for the general expansion too, but depends this time mainly on the structure of the

hybridization function.

In view of conserved quantum numbers on the impurity, the operators are relabeled

as iσ → α where the index α stands for the quantum numbers and other degrees of
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freedom. Following the lines of equation (2.50) to equation (2.52) yields

Z =
∑
k≥0

∑
α1···αk

∑
α′
1···α′

k

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk

∫ β

0

dτ ′1 · · ·
∫ β

τk−1

dτ ′k

× TrTτe
−βHlocdαk

(τk)d
†
α′
k
(τ ′k) · · · dα1(τ1)d

†
α′
1
(τ ′1)

× 〈V̂ †
αk

(τk)V̂α′
k
(τ ′k) · · · V̂ †

α1
(τ1)V̂α′

1
(τ ′1)〉.

(2.78)

If the hybridization is diagonal in α, only bath averages with the same number of V̂ †
α and

V̂α can have a finite contraction, and the above expansion reduces to the expansion in

equation (2.70) with iσ → α. This is for example the case in the normal phase CDMFT

for the Hubbard cluster 2x2 written in the momentum basis, where α runs over the spin

σ and the cluster momenta K.

The sampling of this series differs in two aspects from the sampling when the segment

picture applies. First, the creation and annihilation operators do not generally have to

alternate for the trace to be finite. Second, the two operator updates are not guaranteed

to be ergodic here, see chapter 4.

Here the electrons on the impurity are itinerant, and, in contrast to the case where the

segment picture applies, the general expansion has a sign problem, even for a diagonal

hybridization. The situation gets generally worse for off-diagonal hybridization, and in

chapter 3 we show how to minimize a sign problem in this case.

Observables

While treating the local Hamiltonian in CT-HYB exactly is expensive, this allows to

measure an observable which is not accessible in CT-INT, the density matrix of the

impurity. The estimator reads [15]

ρmm′ =
〈m|Tτe

−βHlocd(τk)d
†(τ ′k) · · · d(τ1)d†(τ ′1)|m′〉

TrTτe−βHlocd(τk)d†(τ ′k) · · · d(τ1)d†(τ ′1)
. (2.79)

With this density matrix, all static observables on the impurity can be evaluated after

the simulation. However, measuring them directly is less memory consuming. For ob-

servables corresponding to quantum numbers of the sub-spaces in section (2.3.2), such

as the particle number N , more accurate results are obtained by integrating from 0 to
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β. Inserting N somewhere between τl+1 and τl in the trace of equation (2.76) results in

a factor of Nl+1 to TrN1 , and the estimator reads [15]

β−1

∫
dτ

TrTτN(τ)e−βHlocd(τk)d
†(τ ′k) · · · d(τ1)d†(τ ′1)

TrTτe−βHlocd(τk)d†(τ ′k) · · · d(τ1)d†(τ ′1)
=

∑
N1

PN1

2k∑
l=0

Nl+1
τl+1 − τl

β
.

(2.80)

Here τ0 := 0, τ2k+1 := β, N2k+1 := N1 and PN1 := TrN1/Tr. Observables corresponding

to other quantum numbers of the impurity are measured in the same way. Similarly, the

charge susceptibility χN,N(iωn) is estimated by [15]

β−1

∫
dτdτ ′eiωn(τ−τ ′)TrTτN(τ)N(τ ′)e−βHlocd(τk)d

†(τ ′k) · · · d(τ1)d†(τ ′1)
TrTτe−βHlocd(τk)d†(τ ′k) · · · d(τ1)d†(τ ′1)

= β−1
∑
N1

PN1

∣∣∣∣
2k∑
l=0

Nl+1
eiωnτl+1 − eiωnτl

iωn

∣∣∣∣
2

.

(2.81)

Notice that observables on the impurity which are not invariant under the symmetries

used to generate the sub-spaces are problematic. This holds for the segment picture as

well.

In appendix D, an implementation of the general CT-HYB impurity solver is presented.



Chapter 3

Unusual criticality in BEDT’s and

the sign problem in CT-HYB

This chapter consists of an article addressing the unusual criticality of the Mott transi-

tion endpoint in layered organic superconductors [24]. Our results show that sub-leading

corrections may be important for the Mott critical point and have to be included in

practice when extracting critical exponents.

After a short introduction to the Mott transition, possible explanations for the unusual

criticality proposed by other researchers are reviewed. We then motivate the use of

DMFT and CDMFT for solving the model Hamiltonian in the context of criticality. In

the methodology, we briefly review the DMFT and CDMFT approximation with CT-

HYB as impurity solver. For CDMFT, we then discuss how the choice of the one particle

basis on the impurity is related to the sign problem in the Monte Carlo simulation. In

the results, we derive the subleading corrections and show how they may explain the

unusual criticality found in [24]. Finally, we discuss the applicability of our findings to

the experimental results.

Contribution of the authors : The first author has written the codes, performed the sim-

ulations and analyzed the results. Further, he has proposed the sub-leading corrections

and reduced the sign problem. The second author proposed to look at this specific prob-

lem, and helped analyzing the results and writing the paper.

Note: after this paper was published, an intern, Charles-David Hébert, fitted the experi-

mental data as described in equation (8) and the following paragraph of the above paper.
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He found that the χ2 of the fit with δ = 3 and subleading corrections was the best.
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The interaction-induced metal-insulator transition should be in the Ising universality class. Experiments on
layered organic superconductors suggest instead that the observed critical endpoint of the first-order Mott
transition in d = 2 does not belong to any of the known universality classes for thermal phase transitions. In
particular, it is found that δ = 2. Given the quantum nature of the two phases involved in the transition, we use
dynamical mean-field theory and a cluster generalization to investigate whether the unusual exponents could
arise as transient quantum behavior preceding the asymptotic critical behavior. In the cluster calculation, a
canonical transformation that minimizes the sign problem in continuous-time quantum Monte Carlo calculations
allows large improvements in accuracy. Our results show that there are important subleading corrections in the
mean-field regime that can lead to an apparent exponent δ = 2. Experiments on optical lattices could verify our
predictions for double occupancy.
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Half-filled band materials should be metallic, but they are
sometimes insulators.1 This paradox was discussed by Boer
and Verwey and by Peierls as early as 1937, but the first
theoretical advancement came from Mott in 1949. He found
that, as a function of some external parameter, it is possible
to control the ratio of interaction energy to kinetic energy
and drive the system through a metal-insulator transition. This
Mott transition has by now been clearly identified in a few
materials1 and in optical lattices of cold atoms.2,3 The order
parameter for the interaction-induced transition should be in
the Ising universality class,4–6 with no breaking of translational
or rotational invariance. This has been verified explicitly in the
three-dimensional compound V2O3.7

It thus came as a surprise when it was discovered that in two-
dimensional layered κ-bisethylenedithio-tetrathiafulvalene
(κ-(BEDT-TTF)2 X, or ET) organic superconductors,8 critical
exponents for the Mott critical point, measured in both charge
(conductivity)9 and spin (NMR) channels,10 did not belong
either to the Ising universality classes or to any other plausible
universality class for thermal phase transitions. Several pro-
posals have appeared to explain this result. Imada et al.11,12

suggested that while the high-temperature regime is described
by classical Ising exponents, there is also a continuous
transition at T = 0 and, in between, a marginal quantum
critical point that controls the observed behavior. Papanikolaou
et al.13 instead started from the two-dimensional (2D) Ising
universality class and argued that, away from criticality, the
subleading energy exponent dominates for the conductivity
over the leading order parameter exponent. The latter becomes
relevant only very close to Tc. A recent experiment on
thermal expansion coefficient finally, argues that the 2D Ising
universality class is the correct one.14 That finding disagrees
with the latest theoretical calculation15 performed with cluster
dynamical mean-field theory (CDMFT)16,17 that measured
an exponent δ = 2, in agreement with the above-mentioned
conductivity9 and NMR experiments.10

Here we revisit the critical behavior at the Mott critical end-
point by studying the one-band Hubbard model, the simplest
model of interacting electrons that contains the physics of the

Mott transition. Given the quantum nature of the two phases
involved in the transition, we investigate whether unique
exponents could arise as transient quantum behavior preceding
the asymptotic critical behavior. Such a quantum critical point
controlling the behavior over a wide range offinite temperature
has already been observed for the conductivity.18 Since the
sizes of the crossover regions are not universal quantities, we
need a quantitative method that accurately takes into account
the quantum mechanics of this problem. To date, dynamical
mean-field theory (DMFT)19–21 and cluster generalizations
are the only available methods that satisfy this requirement.
Single-site DMFT is exact in infinite dimension and can be
applied to lower-dimensional lattices22,23 CDMFT takes into
account some momentum dependence of the self-energy, a
physical ingredient that is known to be important in two
dimensions.24–35 Hence, CDMFT should provide an accurate
description of the Mott transition, except in the asymptotic
regime where spatial critical fluctuations become important.
To interpret our results, we also found it necessary to perform
single-site DMFT calculations, for which analytical results are
available.5,36

Improvements in computer performance and in algorithms
allow us to obtain much more accurate data than earlier
calculations. In the case of CDMFT, for the frustrated lattice
considered here, the sign problem in the continuous time
quantum Monte Carlo solution of the hybridization expansion
(CT-HYB)37–40 is minimized by a canonical transformation.
This allows us to approach the critical point ten times closer
in reduced pressure than previously possible.

Method. The simplest model that contains both the strong
on-site Coulomb repulsion and the kinetic energy of the
frustrated κ-ET’s lattice is the half-filled Hubbard model on a
2D anisotropic triangular lattice,

H =
∑
ijσ

(tij − δijμ)c†iσ cjσ + U
∑

i

ni↑ni↓, (1)

where c
†
iσ creates a spin σ electron at site i, niσ = c

†
iσ ciσ is the

spin σ density at site i, tij = t∗ji are the hopping amplitudes as

201101-11098-0121/2012/85(20)/201101(5) ©2012 American Physical Society
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FIG. 1. (Color online) Periodic partitioning of the anisotropic
triangular lattice into 2 × 2 plaquettes for CDMFT.

shown in Fig. 1 while μ and U are, respectively, the chemical
potential and the screened Coulomb repulsion.

We use single-site DMFT22 and its cluster extension
CDMFT16,17 to solve the Hamiltonian Eq. (1). These methods
start with a periodic partitioning of the infinite lattice model
into independent sites (DMFT) or clusters (CDMFT). The
missing environment of the cluster is replaced by a bath of
noninteracting electrons. The action of the cluster in a bath
model may be written as

S = Scl(c†,c) +
∫ β

0
dτdτ ′c†(τ ′)�(τ ′ − τ )c(τ ), (2)

where Scl is the cluster action as obtained by the partitioning,
c the column vector of the corresponding ciσ ’s, and the
bath has been integrated out in favor of a hybridization
function � = (�iσ,jσ ′ ). This defines an effective impurity
model. Approximating the unknown lattice self-energy locally
by the impurity self-energy, the requirement that the projection
of the lattice Green’s function on the cluster coincides with the
impurity Green’s function computed from the action Eq. (2)
then self-consistently determines �. For CDMFT we take the
2 × 2 plaquette illustrated in Fig. 1. This accounts for the
geometrical frustration in the κ-ET.

To obtain the impurity Green’s function (and other ob-
servables), we use a continuous time quantum Monte Carlo
(CTQMC) solver based on the expansion of the impurity action
in the hybridization function.37–40 In the case of CDMFT,
symmetries of the problem can be used to speed up the
simulation by choosing a single-particle basis in Eq. (2) that
transforms according to the irreducible representations.40 In
our case, separate charge conservation of σ =↑ , ↓ particles
and the C2v point group symmetry of the anisotropic plaquette
lead to the single-particle basis (see Fig. 1 for indices),

cA1σ = 1√
2
(c1σ + c3σ ), c′

A1σ
= 1√

2
(c2σ + c4σ ),

cB1σ = 1√
2
(c1σ − c3σ ), (3)

cB2σ = 1√
2
(c2σ − c4σ ),

with A1, B1, and B2 irreducible representations of C2v (A2
is empty). Due to the degeneracy in the A1 subspace, there
is a degree of freedom in the choice of basis which may be
parametrized by an angle θ as follows:

cos θc′
A1σ

− sin θcA1σ , sin θc′
A1σ

+ cos θcA1σ . (4)
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FIG. 2. (Color online) Average sign in CTQMC simulations of the
anisotropic plaquette impurity problem at CDMFT self-consistency
with t/t ′ = 0.8 (t ≡ 1) and β = 20 as a function of the angle θ in
Eq. (4) for different values of U . The inset zooms on the region where
the sign takes its maximum, as indicated. The dots associated with
each curve indicate the angle where the off-diagonal elements of the
corresponding hybridization functions are minimal with respect to
the L1 norm (solid) and the L2 norm (empty).

In this basis the hybridization function � takes a block-
diagonal form with one 2 × 2 block (A1) and two 1 × 1
blocks (B1 and B2) for each spin (in the normal phase). The
sign problem in the Monte Carlo simulation shows a strong
dependence in θ , as shown in Fig. 2 for t/t ′ = 0.8, β = 20,
and different values of U . One can check that the maximum
of the average sign is related to the angle θ that minimizes
the off-diagonal elements of the hybridization function (A1
block) with respect to some norm. The dots in the inset of
Fig. 2 indicate the maximum with respect to L1 and L2 on
[0,β]. The usual basis, θ = 0, has a bad sign problem.

Results. Figure 3(a) displays double occupancy D ≡
〈n↑n↓〉 as a function of interaction strength calculated for both
single-site DMFT (blue squares) and CDMFT (red circles) at
our best estimate of the corresponding critical T . Both the
metallic (solid symbols) and insulating (open symbols) sides
are shown. The critical temperature is found as follows. Below
the critical temperature, there is hysteresis and a jump in double
occupancy. Above the critical temperature, double occupancy
is continuous. First we searched for the highest (lowest)
temperature where hysteresis (continuity) can be checked in a
reasonable time. The mean of these two temperatures is then
taken as an approximation for the critical temperature.

To check for quantum transient behavior we first fit
the results with D − Dc = c sgn(U − Uc)|U − Uc|1/δ and
different c’s on both sides. This yields δ ∼ 2 for DMFT
and δ � 2 for CDMFT. If we restrict the fit to an interval
closer to the transition, the exponent increases toward δ = 3,
as expected in mean-field theory. From this point of view, it
is tempting to associate δ = 2 to transient quantum behavior.
There is an alternate possibility. In single-site DMFT we know
analytically5,36 that δ takes its mean-field value δ = 3 and that
there are subleading corrections to mean field. To investigate
this possibility, we first derive the subleading corrections.
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The singular part of the mean-field equation for the order
parameter η takes the form5,36

pη + cη3 = h, (5)

with c a constant, while p and h are defined
by p ≡ p1 (U − Uc) + p2 (T − Tc) and h ≡ h1 (U − Uc) +
h2 (T − Tc) . As in the liquid-gas transition, interaction
strength and temperature are not in general eigendirections,
which explains the way they appear in p and h. When p = 0,
the solution is η = (h/c)1/δ , which defines δ = 3. Approaching
the critical line along δU ≡ (U − Uc) for example, the mean-
field Eq. (5) takes the form

p1δUη + cη3 = h1δU. (6)

One can show that the general solution of that equation is of
the form

η =
∞∑
i=1

δUi/3ηi, (7)

with expansion coefficients ηi . The first term, δU 1/3, and the
subleading correction, δU 2/3, are the only terms that lead to
an infinite first derivative at the critical point. In the case of
DMFT, η is the singular part of the hybridization function.
Double occupancy in general should be a smooth function of
η that can be expanded as a power series, a result that can be
proven in DMFT.5 Hence, even when η is dominated by the
leading term δU 1/δ , the η2 term of the power series leads to
subleading δU 2/δ corrections.

The above results suggest that the data for double occu-
pancy should be fitted with the functional form

D − Dc = c1 sgn(δU )|δU |1/δ + c2|δU |2/δ + c3δU, (8)

where δ and the coefficients are adjustable parameters. The
linear term proportional to c3 is nonsingular and is present on
general grounds. When a linear term is added to the δ = 2
fits above, the number of fit parameters is identical to here,
and the results are unchanged. Here we find that with the
subleading corrections and the linear term, it is possible to
obtain an excellent fit to all the points in Fig. 3. In addition,
the fit parameters, including the exponent, are insensitive to
the range of the fit. This robustness of the fit and the better
quality of the fits demonstrate that the alternative quantum
transient hypothesis must be rejected. The solid lines are
fits to the functional form suggested by Eq. (8) and by the
smoothness hypothesis for D. Thefits include both the metallic
and the insulating sides. We find δ = 2.93 ± 0.15 for DMFT,
where we know that the analytical result5 asymptotically is
δ = 3. For CDMFT we find δ = 3.04 ± 0.25. The error in the
fitting parameter δ, estimated as described in Ref. 41, is small
compared to the one caused by the uncertainty in the critical
temperature. We therefore estimate the errors from the values
of δ at the two temperatures just below and above the critical
one. The log-log plot in Fig. 3(b) shows that the data does not
lie on a perfect straight line over the wide range of reduced
units considered here. The straight dashed lines are guides to
the eye that show that the exponent that we would obtain by
fitting over a limited range of δU would decrease from δ = 3
toward δ = 3/2 as we move away from the critical point. On
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FIG. 3. (Color online) Double occupancy as a function of U near
the Mott critical point for the Hubbard model on an anisotropic tri-
angular lattice with t ′/t = 0.8 (t ≡ 1) at half filling and fixed critical
inverse temperature β = 11.15 (squares) for DMFT and β = 9.9
(circles, shiftet by ×101.5) for CDMFT on a 2 × 2 plaquette. The solid
lines show a fit to f (U ) = c1sgn(δU )|δU |1/δ + c2|δU |2/δ + c3δU +
Dc (δU ≡ U − Uc) with the same parameters c1,c2,c3,Dc,Uc, and δ

for the metallic (filled symbols) and the insulating region (open sym-
bols). The best fitting values (Uc,Dc,δ) are (10.445,0.0325,2.93) for
DMFT and (7.932,0.0679,3.04) for CDMFT. (a) Linear plot centered
at (Uc,Dc). The insets zoom on the regions close to the critical point.
(b) Logarithmic plot in reduced units relative to the critical point
with CDMFT data shifted by a factor of 101.5 along the y axis. The
dashed lines show the function ∝|U − Uc|1/δ with δ as indicated. In
the critical regime, up to 500 iterations are necessary for convergence
in the iterative solution of the (C)DMFT equation. Once conver-
gence is reached, we take the average over hundreds of iterations.
Monte Carlo sweeps per iteration: 6 × 109 for DMFT and 109 for
CDMFT.

the metallic side, the crossover extends over a rather wide
region where δ is close to δ = 2.

As shown in Table I, different critical quantities lead
to coherent estimates of δ, whereas the importance of the
subleading corrections varies strongly from case to case. For
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TABLE I. Estimates of the exponent δ from a fit of Eq. (8) to
the critical behavior of the double occupancy D, the local Green’s
function Gloc at τ = β/2, and the real and imaginary parts of the local
hybridization �loc function at the lowest Matsubara frequency, as
obtained by DMFT and CDMFT for the same model and parameters
as in Fig. 3. The ratio |c2/c1| indicates the weight of the subleading
correction, as seen from Eq. (8). The error for δ is ±0.25 for CDMFT
and ±0.15 for DMFT.

DFMT CDMFT

δ |c2/c1| δ |c2/c1|
D 2.93 1.15 3.04 0.51
Gloc(τ = β/2) 2.99 0.32 3.05 0.33
Im�loc(ωn = π/β) 3.02 0.28 3.08 0.086
Re�loc(ωn = π/β) 2.87 0.79 3.02 0.75

the single-band Hubbard model, the singular behavior of D

implies singular behavior in both spin and charge channels,5
as follows from the following two sum rules on spin, χsp,

and charge, χch, susceptibilities, T
∑

n

∫
d2q

(2π)2 χsp (q,ωn) =
n − 2D and T

∑
n

∫
d2q

(2π)2 χch (q,ωn) = n + 2D − n2, where
ωn are Matsubara frequencies and q wave vectors in the
Brillouin zone.

Below the critical temperature, there is a first-order tran-
sition with a jump in double occupancy that scales as pβ

with β = 1/2. It is very difficult to obtain this exponent
numerically because of hysteresis. Similarly, the exponent
for the susceptibility (∂η/∂h)p ∼ p−γ with γ = 1 requires
numerical differentiation and cannot be obtained accurately.

Discussion. Fitting with a single exponent over a broad
region away from the critical point leads to δ ≈ 2,15 as ob-
served experimentally.9,10 Hence it is tempting to interpret this
result as a quantum mechanical transient behavior. However,
the fact that δ ≈ 2 is obtained also for single-site DMFT, where
analytical results exist,5 leads us instead to look at the alternate
hypothesis that subleading corrections to mean-field theory
explain the results. With the same number of parameters in
both kinds of fits, we find with subleading corrections that
δ = 3 gives a much better agreement with all the data for both

DMFT and CDMFT. Subleading corrections are particularly
important when the accessible data is asymmetric about the
critical point.

Extracting the pressure dependence of model parameters
from band-structure calculations,42 we estimate that our
numerical results are as close to the critical point in reduced
units as are the experiments. The value γ = 1 in these
experiments is the same as the mean-field one, while β = 1
would imply that a nonsingular term dominates the physics in
the accessible range.

Our results could be relevant for experiment if the failure of
mean-field theory due to long-wavelength fluctuations occurs
only very close to the critical point. Here, the size of the
critical region, as determined from the Ginzburg criterion, is
not known. A sizeable mean-field regime has been obtained
experimentally for the 3D Mott transition.7 Mean-field behav-
ior could also be observed because of coupling to the lattice.43

This case would also lead to subleading corrections with the
same exponents but different sizes of the crossover regions.
It would thus be interesting to reanalyze the experimental
results by including the subleading correction to the mean-field
behavior.

To definitely settle this issue experimentally, it would be
interesting to study the two-dimensional Mott transition in
frustrated optical lattices, where double occupancy is directly
accessible.2
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Chapter 4

Ergodicity of the CT-HYB impurity

solver

The article presented in this chapter shows that for the CT-HYB impurity solver, the

standard updates of inserting and removing two operators are not sufficient for ergodic-

ity in the presence of broken spatial symmetries, and discusses the updates necessary to

restore ergodicity.

In the introduction, we begin by placing the CT-HYB solver in the context of bro-

ken symmetries and give a short outline of the article. In Sec. II we review the self-

consistent mapping of a lattice model on an effective impurity problem with the example

of CDMFT, and discuss the difference between the normal and broken symmetry phases

within CDMFT and DCA. In Sec. III we rederive the partition function expansion for

the CT-HYB solver and briefly discuss the Metropolis-Hasting sampling of this series.

In Sec. IV we consider a CDMFT study of superconductivity in the 2D Hubbard model

and show that the two-operator updates are not ergodic as a matter of principle. After

showing that four-operator updates restore ergodicity in this case, we show in Sec. V

results obtained with and without the new updates. In Sec. VI, we discuss the updates

necessary to restore ergodicity for general broken symmetries.

Contribution of the authors : The first author noticed the ergodicity problem, derived

the updates necessary to restore ergodicity and wrote the codes. The second author is

responsible for the simulations in Sec. V, analyzed the results and participated in writing

the paper. The last author supervised the work and helped writing the paper.
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With the success of dynamical mean field theories, solvers for quantum-impurity problems have
become an important tool for the numerical study of strongly correlated systems. Continuous-
time Quantum Monte Carlo sampling of the expansion in powers of the hybridization between the
“impurity” and the bath provides a powerful solver when interactions are strong. Here we show
that the usual updates that add or remove a pair of creation-annihilation operators are rigorously
not ergodic for several classes of broken-symmetries that involve spatial components. We show that
updates with larger numbers of simultaneous updates of pairs of creation-annihilation operators
remedy this problem. As an example, we apply the four operator updates that are necessary for
ergodicity to the case of d-wave superconductivity in plaquette dynamical mean-field theory for the
one-band Hubbard model. While the results are qualitatively similar to those previously published,
they are quantitatively better that previous ones, being closer to those obtained by other approaches.

PACS numbers: 71.20.-b, 02.70.Ss, 71.27.+a

I. INTRODUCTION

Understanding and predicting the different phases of
matter is one of the main goals of condensed matter
physics. Some phases break symmetries of the underlying
Hamiltonian. This can happen in an infinite system only.
Mean field theories are an important tool for the study of
broken symmetries since the infinite system limit is natu-
rally taken into account. While ordinary mean field theo-
ries are sufficient for weakly correlated systems, they fail
for strongly correlated systems such as doped Mott in-
sulators1, high temperature superconductors,2–4 layered
organic superconductors5,6 and the like. Here dynami-
cal mean field theories7–9 are necessary for an adequate
treatment. They self-consistently map the infinite lat-
tice model on a quantum-impurity model consisting of a
finite interacting system immersed in a non-interacting
electronic bath.
A breakthrough in the solution of quantum-impurity

problems has occurred with the advent of Continuous-
Time Quantum Monte-Carlo algorithms (CTQMC).10

These algorithms come in various guises: For example,
the Rubtsov algorithm,11 auxiliary-field algorithm12 and
the hybridization expansion algorithm13–15. Here we fo-
cus on the latter algorithm (CT-HYB) that is especially
suited at strong coupling16 and for ab-initio codes that
are combined with dynamical mean-field theory.17

We show that for several classes of broken symmetries
that involve spatial components, CT-HYB is not ergodic

as a matter of principle if one follows the standard update
procedure of adding or removing a single pair of creation-
annihilation operators. This deficiency can be cured by
updates that add more pairs of creation-annihilation op-
erators. As an important example, we consider the case
of d-wave superconductivity on the square lattice that
breaks not only U(1) symmetry but also rotation by π/2.
The solution of the quantum-impurity problem consist-
ing of the Hubbard model on a plaquette immersed in
a bath is made self-consistent with the lattice problem
through Cellular Dynamical-Mean-Field theory18. The
resulting phase diagram is qualitatively similar with the
previously published one19 but quantitatively more re-
liable since in the zero-temperature limit the range of
doping where superconductivity appears agrees with re-
sults obtained with the exact-diagonalization impurity
solver20.

In Sec. II we introduce an effective quantum-impurity
model for a correlated problem on an infinite lattice,
along with the self-consistency condition for Cellular-
Dynamical Mean-Field theory (CDMFT). All of our for-
mal results on Monte Carlo updates apply to the hy-
bridization expansion, whatever the self-consistency con-
dition between impurity and lattice. We then recall
in Sec. III the general formalism for the CT-QMC hy-
bridization solver. The question of ergodicity is discussed
in Sec. IV. After demonstrating in the first subsection
why standard updates with pairs of creation-annihilation
operators are not ergodic using the example of d-wave
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superconductivity, we show how updates with two pairs
of creation-annihilation operators solve the problem for
this case. The phase diagram is discussed in the following
subsection while the case of a general broken spatial sym-
metry is addressed in the last subsection. We conclude
in Sec. V

II. EFFECTIVE IMPURITY MODEL

The effective quantum-impurity problems we are in-
terested in consists of an interacting system, described

by Hloc(d
†
i , di), immersed in a non-interacting bath. The

Hamiltonian for the impurity plus bath takes the form

Himp = Hloc(d
†
i , di) +

∑
iμ

(Vμia
†
μdi + V ∗

μid
†
iaμ)

+
∑
μ

εμa
†
μaμ,

(1)

with εμ the bath dispersion and Vμi the amplitude for
a particle to hop from the system orbital i to the bath
orbital μ. We include spin and position in the definition
of impurity orbitals. The self-energy Σ of this impurity
problem is finite for the interacting system only, so that
when the bath is integrated out, Dyson’s equation takes
the form

G−1
loc = G−1

0,loc −Δ− Σ, (2)

where G−1
loc and G−1

0,loc are the interacting and non-
interacting cluster Green’s functions respectively. The
bath degrees of freedom are encapsulated in the hy-
bridization function

Δij(iωn) =
∑
μ

V ∗
μiVμj

iωn − εμ
, (3)

which plays the role of the dynamical mean field.
For the self-consistent mapping between the lattice and

impurity, CDMFT18 starts with a periodic partitioning
of the lattice system into disconnected clusters. Taking
for Hloc the restriction of the lattice Hamiltonian to one
of these clusters and representing the rest of the lattice
by a non-interacting bath, the hybridization function is
self-consistently obtained from a restriction of the lattice
Dyson equation

Gloc[Δ] = (G−1
0,latt − Σ′

latt[Δ])−1|loc (4)

to the cluster, with G0,latt the non-interacting lattice
Green’s function. The approximate lattice self-energy
Σ′

latt equals the impurity-model self-energy on everyone
of the clusters.
This self-consistent mapping on an impurity problem

conserves the symmetries of the lattice system compati-
ble with the partitioning. In the normal phase, the dy-
namical mean field is constrained to satisfy these sym-
metries, while in a broken symmetry phase it is allowed

to break some of them. The symmetry is thus broken in
the dynamical mean fields and not on the cluster. This
applies to the dynamical cluster approximation DCA as
well.21

In order to satisfy the self-consistency condition,
CDMFT and DCA require an infinite number of bath
orbitals. Only CTQMC impurity solvers give (statisti-
cally) exact solutions in this limit. The CT-HYB impu-
rity solver of interest here is reviewed in the next section.

III. HYBRIDIZATION EXPANSION FOR
CONTINUOUS-TIME QUANTUM MONTE

CARLO

This summary of the CT-HYB algorithm10,13–15 fo-
cuses on the aspects relevant for the rest of the discus-
sion on ergodicity. First, the impurity Hamiltonian is
rearranged as

Himp = Hloc +Hhyb +H†
hyb +Hbath, (5)

where Hbath =
∑

μ εμa
†
μaμ and Hhyb =

∑
iμ Vμia

†
μdi.

Writing the impurity partition function Z = Tre−βHimp

in the interaction representation and expanding in pow-
ers of the hybridization term yields

Z = TrTτe
−βH0e−

∫ β
0

dτ(Hhyb(τ)+H†
hyb(τ))

=
∑
k≥0

1

(2k)!

∫ β

0

dτ1 · · · dτ2kTrTτe
−βH0

(
Hhyb(τ1)

+H†
hyb(τ1)

) · · · (Hhyb(τ2k) +H†
hyb(τ2k)

)
=

∑
k≥0

1

k!2

∫ β

0

dτ1 · · · dτk
∫ β

0

dτ ′1 · · · dτ ′kTrTτe
−βH0

×Hhyb(τ1)H
†
hyb(τ

′
1) · · ·Hhyb(τk)H

†
hyb(τ

′
k).

(6)

As Hloc conserves the particle number, odd expansion
orders vanish and there are (2k)!/k!2 finite terms when

multiplying out the second line. Defining V̂i =
∑

μ V
∗
μiaμ

and replacing the hybridization terms, the cluster and
bath degrees of freedom are separated

Z =
∑
k≥0

∑
i1···ik

∑
i′1···i′k

1

k!2

∫ β

0

dτ1 · · · dτk
∫ β

0

dτ ′1 · · · dτ ′k

× TrTτe
−βH0 V̂ †

i1
(τ1)d(τ1) · · · d†(τ ′k)V̂ik(τ

′
k)

=
∑
k≥0

∑
i1···ik

∑
i′1···i′k

1

k!2

∫ β

0

dτ1 · · · dτk
∫ β

0

dτ ′1 · · · dτ ′k

× TrTτe
−βHlocdi1(τ1)d

†
i′1
(τ ′1) · · · dik(τk)d†i′k(τ

′
k)

× Zbath〈V̂ †
i1
(τ1)V̂i′1(τ

′
1) · · · V̂ †

ik
(τk)V̂i′k(τ

′
k)〉,

(7)

where 〈O〉 := Z−1
bathTr[Tτe

−βHbathO] and Zbath is the
bath partition function.
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di1(τ1)

di2(τ2)

d†i′2(τ
′
2)

d†i′1(τ
′
1)

d†i′1(τ
′
1)

d†i′2(τ
′
2)

di2(τ2)

di1(τ1)

Δi′1i1

Fi2i1 F i′2i
′
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Δi′2i1

Δi′1i2Δi′2i2

FIG. 1. Diagrams contributing to the weight of a second order
configuration, c.f. Eq. (8). The bold black circle represents
the trace with the impurity operators, connected in all differ-
ent ways by the hybridization function.

The bath is quadratic, and with Wick’s theorem the
average over the bath is expressed as a sum over all con-
tractions, e.g. at second order

〈V̂ †
i1
(τ1)V̂i′1(τ

′
1)V̂

†
i2
(τ2)V̂i′2(τ

′
2)〉 =

〈V̂ †
i1
(τ1)V̂i′1(τ

′
1)〉〈V̂ †

i2
(τ2)V̂i′2(τ

′
2)〉 − 〈V̂ †

i1
(τ1)V̂i′2(τ

′
2)〉

× 〈V̂ †
i2
(τ2)V̂i′1(τ

′
1)〉 − 〈V̂ †

i1
(τ1)V̂

†
i2
(τ2)〉〈V̂i′1(τ

′
1)V̂i′2(τ

′
2)〉,
(8)

where 〈V̂ †
i (τ)V̂i′(τ

′)〉 evaluates to the hybridization func-
tion Δi′i(τ

′ − τ) in Eq. (3). The anomalous hybridiza-

tion functions Fi2i1(τ2 − τ1) := 〈V̂ †
i1
(τ1)V̂

†
i2
(τ2)〉 and

F i2i1(τ2 − τ1) := 〈V̂i2(τ1)V̂i1(τ2)〉 vanish for a particle
number conserving bath as in Eq. (1). A contraction
may be represented as shown in Fig. 1, and the sum over
all finite contractions can in most cases be cast into a
determinant.
In Quantum Monte Carlo one interprets the terms of

the series (7), supposed positive here for simplicity, as
weights w for a probability distribution w/Z over the
configuration space C := {(τ1i1 τ ′1i′1 . . . τkik τ ′ki′k)|k ≥ 0}.
Observables, such as the local Green’s function, can be
expressed as random variables over C. To obtain es-
timates, the probability distribution is sampled by a
Markov process c1 → c2 → . . . in C, characterized by
the transition probability P (ci+1|ci) of going from con-
figuration ci to configuration ci+1. The Markov process
converges to w/Z if the transition probability satisfies de-
tailed balance P (ci+1|ci)w(ci) = P (ci|ci+1)w(ci+1) and
ergodicity.
The Metropolis-Hasting algorithm gives a possible

choice for the transition probability. To start with a trial
configuration c is chosen according to a trial probability

q(c|ci), and we set ci+1 := c with probability

p = min

(
q(ci|c)w(c)
q(c|ci)w(ci) , 1

)
(9)

and ci+1 := ci otherwise. This transition probability p · q
satisfies detailed balance.

IV. ERGODIC UPDATES IN THE PRESENCE
OF BROKEN SYMMETRY

A. Standard updates

For an ergodic Metropolis-Hasting sampling, the tran-
sition probability should allow to explore all the config-
uration space. With respect to the trial probability, this
sets two conditions.
First, the proposed updates should allow to go from

any configuration to any configuration. A natural choice
here is the insertion or the removal of two impurity op-

erators di(τ)d
†
i′(τ

′). Second, the weights of the config-
urations along the proposed path have to be finite. For
some configurations, the trace may vanish due to symme-
try constraints. If this happens along all paths between
two configurations, the two operator updates are not er-
godic. This is illustrated in the next section.

B. Updates for ergodicity in the presence of
superconductivity

Consider a CDMFT study of d-wave superconductivity
in the 2D Hubbard model with a 2x2 cluster. As the
cluster Hamiltonian conserves, beside charge and spin σ,
the cluster momentum K ∈ {(0, 0), (π, 0), (0, π), (π, π)},
it is numerically advantageous to label the one particle
basis by K.15

In the normal phase only the diagonal hybridization
entries ΔσK,σK are finite. In the superconducting phase
charge conservation is broken, and the anomalous entries
F↑K,↓−K as well as their conjugates F ↑K,↓−K may be
finite. The d-wave order parameter changes sign under
rotation by π/2 and hence F↑(0,π),↓(0,π) = −F↑(π,0),↓(π,0)
while F↑(0,0),↓(0,0) and F↑(π,π),↓(π,π) vanish.

Only insertions or removals of d†σKdσK operators lead
to a finite trace since K is conserved. Hence, starting
from expansion order zero, the two operator updates only
reach configurations where for each σ,K there is the same

number of d†σK and dσK. The finite second order config-
uration

Tr[d↑(0,π)d↓(0,π)d
†
↓(π,0)d

†
↑(π,0)]

× F↑(0,π),↓(0,π)F ↑(π,0),↓(π,0)
(10)

in the superconducting phase does not meet this condi-
tion, and the two operator updates are not ergodic. Inser-
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tion or removal of these four operators or their conjugates
at once is thus a necessary condition for ergodicity.
To show that these four operator updates restore er-

godicity in principle, it is sufficient to connect an arbi-
trary finite configuration to expansion order zero, as this
allows to go from any configuration to any configuration
by detailed balance. Consider any finite configuration. It
can be decomposed into groups of two or four operators
which transform as the identity. Groups of two opera-
tors come from finite contractions with normal hybridiza-
tion functions ΔσK,σK. In addition, by charge conserva-
tion on the impurity, all possible anomalous contractions
can be grouped in pairs of the form F↑K,↓−KF ↑K′,↓−K′ ,
where K′ and K can be different. The corresponding
group of four operators transforms as the identity, and
the four operator updates allows us to remove them. If
K = K′, they may also be removed by two times a
two operator update. Hence every configuration can be
reached from zero expansion order.
In the following section, we illustrate how the four op-

erator updates reconcile results obtained with different
methods.

0 0.05 0.1 0.15 0.2
δ

0

0.01

0.02

0.03

0.04

|Φ
|

FIG. 2. d-wave superconducting order parameter Φ as a func-
tion of doping δ, for the low temperature T = 1/100, with
and without four operator updates (circles and squares re-
spectively). The value of the interaction U = 9.0 is larger
than UMIT.

C. Numerical results for the superconducting state

Consider the Hubbard model on a square lattice with
on-site interaction U and nearest-neighbor hopping t. We
follow the notation of Ref. 19 and use CDMFT on a 2×2
plaquette.
We begin with U = 9.0, which is above the Mott tran-

sition endpoint at half filling UMIT ≈ 5.9522,23. Figure 2

0 0.01 0.02 0.03 0.04 0.05 0.06
T

0

0.01

0.02

0.03

0.04

|Φ
|

FIG. 3. d-wave superconducting order parameter Φ as a func-
tion of temperature T for U = 9.0 and δ = 0.04, with and
without four operator updates (circles and squares respec-
tively)

shows the d-wave superconducting order parameter Φ at
the low temperature T/t = 1/100 as a function of dop-
ing, with and without four operator updates (circles and
squares, respectively). In both cases, Φ = 0 in the Mott
insulator at zero doping, then it increases upon hole dop-
ing, reaches a maximum around δ ≈ 0.09, and finally it
decreases with further doping. Notice that the position
of the maximum of Φ remains approximately the same,
and it occurs for a doping near the underlying normal
state transition between a pseudogap and a correlated
metal.19,24

The effect brought about by the four operator updates
is twofold: the overall strength of Φ is larger and Φ ex-
tends over a larger range of dopings when the four oper-
ator updates are considered. The range of dopings where
superconductivity occurs is now consistent with the re-
sults found at T = 0 in Ref. 20.
Figure 3 shows the superconducting order parameter

Φ at δ = 0.04 as a function of temperature T , with and
without four operator updates (circles and squares, re-
spectively). In both cases, Φ decreases with increasing
T and disappears at the CDMFT transition temperature
T d
c . We determine T d

c as the mean of the two temper-
atures where Φ changes from finite to zero within error
bars.
Physically, T d

c is the temperature below which Cooper
pairs form within the 2 × 2 plaquette. In Ref. 19 we
pointed out that T d

c is distinct from the pseudogap tem-
perature T ∗ and can be associated to local pair formation
observed in tunnelling spectroscopy25,26.

Finally, it is important to evaluate the role of the four
operator updates on the scenario for the interplay be-
tween superconductivity and Mott physics that we have
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put forward in Refs. 19 and 27. Fig. 4 shows the temper-
ature versus doping phase diagram considered in those
references. The value of the interaction is U = 6.2 and
both superconducting and normal state are shown.
First, let us focus on T d

c , indicated by full and dashed
blue line (with and without four operator updates, re-
spectively). The effects brought about by the four oper-
ator updates are solely quantitative: the superconducting
phase delimited by T d

c extends over a large range of dop-
ing and temperature. The main qualitative features of T d

c

remain however unchanged: (i) at zero doping, T d
c is zero,

(ii) at all numerically accessible small dopings T d
c has a

finite value, which does not show large variations when a
pseudogap appears in the underlying normal state, and
(iii) with further doping beyond the pseudogap, T d

c de-
creases and eventually vanishes at large doping.
Second, the interplay between superconductivity and

Mott physics discussed in earlier papers19,27 is still
valid. The first-order transition at finite doping sepa-
rating a pseudogap from a correlated metal is contin-
uously connected to the first-order Mott transition at
half-filling.22,24 The crossovers lines emerging out of the
finite-doping first-order transition signal the appearance
of a Mott-driven pseudogap at along a line, T ∗, at finite
temperature28. The crossovers intersect the supercon-
ducting state delimited by T d

c , implying that pseudogap
and superconductivity are distinct phenomena. Super-
conductivity can emerge either from a pseudogap phase
or from a correlated metal, a result confirmed by large
cluster studies.29–32 A discussion of the general features
of these theoretical results in the context of experiments
appears in Ref. 33.
Note that since T d

c is largest for values of U close to
UMIT , it is comforting that the four operator updates
take T d

c well above 100K, as shown in Fig. 4. Indeed, the
cuprates are described by a larger U than the one stud-
ied here, so calculations will lead to a smaller optimal T d

c .
This T d

c should nevertheless still be above the maximal
Tc since it is a mean-field result. Long-wavelength fluc-
tuations and other non mean-field effects can only make
the true Tc smaller than T d

c .

D. Updates for ergodicity in the presence of
general broken symmetries

The lack of ergodicity of two-operator updates occurs
more generally with broken symmetries. Before we dis-
cuss this, let us return to the case of superconductivity.
In the normal phase, configurations which are problem-
atic in the superconducting phase have vanishing weight
because the corresponding hybridization functions van-
ish. The ergodicity of the two operator updates thus
depends on the structure of the hybridization function.
To render this dependence more explicit, we begin by

following the lines of Sec. (IVB), but considering an ar-
bitrary abelian symmetry group G instead of the trans-
lation symmetry that gave us conservation of K. Replac-

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
δ

0.00

0.05

0.10

T

(δp,Tp)

Mott
insulator

δc1

δc2

T d
c

TWL

Tχ0

T
Tσc

Tρc,min

TA,max

Tχ0,max

T d
c

0

200

400

T
(K

)

FIG. 4. (Color online) Revised temperature versus doping
phase diagram of the two dimensional Hubbard model within
plaquette CDMFT for U = 6.2. The only modification com-
pared with Refs. 19 and 27 is for the superconducting re-
gion delineated by T d

c (blue/light grey area). With two-
operator updates, superconductivity occurs below the dotted
blue (light grey) line. With the four-operator updates, su-
perconductivity extends to the end of the blue (light-grey)
area. For completeness, we describe the rest of the phase
diagram. The first-order transition (red/dark grey area) ter-
minating at the critical endpoint (δp, Tp) (circle) separates a
correlated metal from a pseudogap metal. Tσc(δ) is the tem-
perature where σc(μ) has an inflection point. It follows T ∗

and TWL, i.e. the dynamic and thermodynamic supercritical
crossovers determined by the inflection in the local density
of states A(ω = 0, T ) and in the charge compressibility κ(μ)
respectively28. The pseudogap scale can be identified also as
inflection points in the local spin susceptibility χ0(T ), Tχ0 .
Tρc,min is the temperature where ρc(T ) has a minimum. It
scales with the temperature where A(ω = 0, T ) [χ0(T )] peaks,
TA,max [Tχ0,max].

ing the momenta K by the characters χ of G, all F↑χ1,↓χ2

with χ1χ2 = χ0 and their conjugates are allowed to be
finite.34 While the configuration

Tr[d↑χ1d↓χ2d
†
↓χ′

2
d†↑χ′

1
]F↑χ1,↓χ2

F ↑χ′
1,↓χ′

2
(11)

with χ1χ2 = χ′
1χ

′
2 = χ0 has a finite trace, there is no

normal phase contraction if χ1 �= χ′
1 and χ2 �= χ′

2. As
another example, in addition to superconductivity on the
square lattice treated in Sec. IVB, consider supercon-
ductivity on an anisotropic triangular lattice with a 2x2
cluster in CDMFT. This cluster has C2v symmetry, and
entries in the hybridization function F with χ0 = A2

may be finite. Within the one particle basis, this hap-
pens with the irreducible representations χ1 = χ′

2 = B1

and χ2 = χ′
1 = B2 or χ1 = χ′

2 = B2 and χ2 = χ′
1 = B1.

The situation changes if only the spatial symmetry is
broken, and entries in the hybridization Δσχ1,σχ2

trans-
forming as χ0 (i.e. χ1χ2 = χ0) are finite. Choose an
M > 1 such that χM

0 = 1. Then

Tr[d†σχ1
dσχ2

· · · d†σχ1
dσχ2

]Δσχ1,σχ2
· · ·Δσχ1,σχ2

(12)
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where Δσχ1,σχ2
occurs M times has finite weight but

no normal phase contraction, since χ1 �= χ2 by defini-
tion. This means that two operator updates can never
reach this configuration. In addition, insertion of more
than four operators are necessary for ergodicity if m > 2,
where m is defined by the smallest non-zero integer such
that χm

0 = 1.
To restore ergodicity, we begin by insertion and re-

moval of operators as in equation (12) with M = m.
We have to include also all insertions and removals that
come from other hybridzation functions Δ that trans-
form as χ0, e.g. with some spins flipped. If m = 2 this
is sufficient. Otherwise χ0 �= χ0, and there are two types
of configurations which have to be considered. First, the
configurations as in (12), but for χm

0 as well. Second,
configurations of the type χ0χ0, analogue to equation
(11).
An example of a broken spatial symmetry with m = 2

is anti-ferromagnetism. In the K basis of Sec. (IVB),
χ0 is the character corresponding to (π, π). A possibility
to avoid four operator updates here is to take the C2v

group with mirror symmetry along the diagonals, as this
symmetry is not broken.
Generalization to other broken symmetries and com-

binations of broken symmetries is straightforward, but
may be tedious. Notice however, that the two operator
updates are always ergodic whenever the cluster Hamil-
tonian is such that the trace can be evaluated in the
segment representation.10,13,14 In that case creation and
annihilation operators always come in pairs which trans-
form as the identity. Otherwise the trace vanishes.

V. CONCLUSION

While the use of symmetries of the cluster is a pow-
erful tool to accelerate the evaluation of the trace over
cluster states in the CTQMC hybridization solver, we
have shown that the non-vanishing hybridization func-
tions that arise in the presence of several classes of
broken-symmetries in the bath generally introduce con-
figurations of creation-annihilation operators in the clus-

ter trace that cannot be reached with the usual updates
that add or remove a pair of creation-annihilation op-
erators. This phenomenon occurs with broken symme-
tries that involve spatial components. Ergodicity can
be recovered by introducing updates with simultaneous
insertion-removal of a larger numbers of pairs of creation-
annihilation operators. Hamiltonians that lead to traces
that can be evaluated in the segment algorithm13,14 are
however exempt from this difficulty.

As an example, we applied four operator updates that
are necessary for ergodicity to the case of d-wave super-
conductivity in 2×2 plaquette dynamical mean-field the-
ory for the one-band Hubbard model. The results are
qualitatively similar to those previously published,19,27

leading in particular to the same physical conclusions on
the interplay between pseudogap and d-wave supercon-
ductivity. The results are however quantitatively better
than previous ones. In particular, the range of doping
over which superconductivity occurs close to T = 0 is
in better agreement with that found using the exact-
diagonalization impurity solver.20 We thus expect that
qualitative conclusions of previously published results us-
ing this algorithm for d-wave superconductivity19,27,35–37

will remain true, but the calculations should be revised
for quantitative purposes. More importantly, one should
keep in mind that in any new calculation in the presence
of broken symmetries involving spatial components, one
should include many-point updates in addition to the pair
of creation-annihilation operator updates usually imple-
mented.
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Chapter 5

Optimization of the CT-HYB

impurity solver

The article in this chapter shows different algorithmic optimizations of the CT-HYB im-

purity solver. In the context of real material simulations, we achieve speedups of up to

500 compared to a straightforward implementation.

After a short motivation for the importance of a fast CT-HYB solver, we briefly an-

ticipate in the introduction the basic ideas behind the optimizations. In Sec. II, we

review the CT-HYB solver, focussing on the aspects relevant for the rest of the paper.

The first optimization, based on a data structure from computer science called skip lists,

is presented in Sec. III. The lazy trace evaluation, an optimization first presented in [42],

is discussed in Sec. IV. These two optimizations are then combined to form the final opti-

mizations in Sec. V. After benchmarking the different optimizations in Sec. VI, based on

impurity models from DFT+DMFT calculations, we mention in Sec. VII other examples

where the ideas of this paper may be useful.

Contribution of the authors: The lazy trace evaluation is due to the second author, which

also wrote parts of the paper and helped with the benchmarks. The first author proposed

skip lists to store matrix products and combined them with the lazy trace evaluation,

which he put on a rigorous mathematical basis. He also implemented all algorithms pre-

sented in the paper, performed the benchmarks and wrote the core of the paper. The

third author helped with writing the paper. The last author wrote parts of the paper

and revised it together with the first author.
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The solution of a generalized impurity model lies at the heart of electronic structure calculations
with dynamical mean-field theory (DMFT). In the strongly-correlated regime, the method of choice
for solving the impurity model is the hybridization expansion continuous time quantum Monte Carlo
(CT-HYB). Enhancements to the CT-HYB algorithm are critical for bringing new physical regimes
within reach of current computational power. Taking advantage of the fact that the bottleneck in the
algorithm is a product of hundreds of matrices, we present optimizations based on the introduction
and combination of two concepts of more general applicability: a) skip lists and b) fast rejection of
proposed configurations based on matrix bounds. Considering two very different test cases with d
electrons, we find speedups of ∼ 25 up to ∼ 500 compared to the direct evaluation of the matrix
product. Even larger speedups are likely with f electron systems and with clusters of correlated
atoms.

I. INTRODUCTION

One of the frontiers in condensed matter systems is
the realistic modeling of strongly-correlated materials.
The combination of density functional theory (DFT), a
workhorse for electronic structure calculations of weakly-
correlated materials, with dynamical mean-field theory
(DMFT)1, originally designed to handle strong correla-
tions in simple models, has allowed insights into strongly-
correlated compounds at a level of realism previously un-
obtainable. Comparisons of momentum-resolved spectral
functions, densities of states, and optics between theory
and experiment are routine.

Lying at the core of this combined theory, named
DFT+DMFT2–8, is the solution of a generalized Ander-
son impurity model. In the strongly-correlated regime,
the method of choice is the hybridization expansion con-
tinuous time quantum Monte Carlo (CT-HYB)9–12, a nu-
merically exact algorithm capable of handling arbitrary
local interactions on the impurity site, in particular, the
full atomic Coulomb potential needed to capture the d
and f electron physics present in strongly-correlated ma-
terials. Enhancements to the CT-HYB algorithm are
important for bringing new physical regimes within the
reach of current computational resources.

In the context of model Hamiltonians, CT-HYB is also
commonly used as an impurity solver for cluster gener-
alizations of DMFT.13–25 CT-HYB is particularly useful

in the strongly correlated case.26

Here, we present optimizations based on skip lists28

and matrix bounds which result in a speedup of ∼ 25
up to ∼ 500 as compared to the straightforward im-
plementation of CT-HYB (see Fig. 1). These speedups
are obtained for two very different test cases where the
materials contain correlated d electrons. In the low-
temperature and strongly-correlated regimes of interest,
the most computationally expensive step is the evalua-
tion of the expectation value of a time-ordered sequence
of (possibly thousands of) creation and annihilation oper-
ators acting on the impurity degrees of freedom, schemat-

ically notated as 〈d†1d2d3d†4d†5d6 · · ·〉. When the complete
basis of impurity states are inserted between each op-
erator, the problem is transformed into (the trace of)
a product of hundreds of matrices, called the impurity
trace, which must be evaluated at each Monte Carlo step.
Our algorithm, which we dub “lazy skip lists”, opti-

mizes the matrix product by combining the following two
ideas. First, we take advantage of the fact that between
subsequent Monte Carlo steps, the matrix product only
changes by the insertion or removal of two operators, for

example, 〈d†1d2d3d†4d†5d6 · · ·〉 → 〈d†
id

†
1d2d3d

†
4djd

†
5d6 · · ·〉

in the case of insertion. We observe that the intermediate
products d†1d2d3d

†
4 and d†5d6 · · · are unchanged. Using

skip lists, we efficiently store these intermediate prod-
ucts to minimize recomputation. A similar idea based
on binary search trees is presented in Ref. 12. However,
skip lists are easier to implement and statistically just as
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FIG. 1. Benchmark of different optimizations presented in
this paper on the basis of a LNO thin film simulation27

(top panel) and a FeTe simulation (lower panel), using stan-
dard updates with low acceptance ratio and efficient updates
with high acceptance ratio. We measure the speedup of the
skip lists (Sec. VA without lazy trace evaluation), the lazy
trace evaluation (Sec. IV) and the lazy skip lists (Sec. VA
and Sec. VB), compared to a straightforward implementa-
tion (Sec. II B) as baseline.

efficient.28

Second, we often can avoid performing the matrix
product altogether by quickly rejecting proposed Monte
Carlo moves via a “lazy” evaluation of the impurity trace.
This implementation was first carried out in Ref. 29 and
already successfully used in Ref. 30. In normal Monte
Carlo sampling, we compute an acceptance probability
p for a proposed move, then accept the move if p > u,
where u is a number chosen randomly in [0, 1]. Here,
we do the opposite: we flip the metaphorical Monte
Carlo coin to obtain u first, then lazily refine bounds
pmin < p < pmax on the acceptance ratio until u drops
outside the bracketed interval. The bounding is fast, in-
volving only scalar operations, and rapidly converges be-
cause the time-evolution operators in the time-ordered
operator sequence often involve exponents which vary
tremendously in magnitude.

We begin by reviewing the CT-HYB algorithm in
Sec. II, focusing on the aspects relevant to this work.
In the next two sections (Sec. III and IV), we present in-
dependently the key algorithmic advancements, skip lists
and lazy trace evalution, which are combined to form the
final method in Sec. V. We benchmark our optimizations
in Sec. VI. The Appendix explains how the trace can be
bounded using matrix norms.

II. CONTINUOUS TIME QUANTUM MONTE
CARLO

In this section, we briefly summarize the key steps
which generate the hybridization expansion formulation
of impurity models. The goal is to quickly arrive at a
description of the structure of the impurity trace im-
posed by the physics and to discuss what it implies for
the Monte Carlo algorithm.
A general impurity model consists of a local interacting

system Hloc describing the impurity degrees of freedom,
immersed in a non-interacting electronic bath:

H = Hloc(d
†
i , di) +

∑
μ

εμa
†
μaμ

+
∑
iμ

(Vμia
†
μdi + h.c.), (1)

where εμ is the bath dispersion and Vμi the amplitude for
particles to hop from the impurity orbital i to the bath
orbital μ. The spin index is absorbed into the index i.

A. Partition Function Sampling

In CT-HYB, we transform the partition function Z =
Tr e−βH of the impurity model into a form amenable for
Monte Carlo sampling (described in detail in Ref. 12).
One uses the interaction representation with the unper-
turbed Hamiltonian the sum of the local and bath Hamil-
tonians. The hybridization is the interaction term. Then,
we expand the resulting expression in powers of this hy-
bridization term, giving

Z = Zbath

∞∑
k=0

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk

∫ β

0

dτ ′1 · · ·
∫ β

τ ′
k−1

dτ ′k

×
∑
i1···ik

∑
i′1···i′k

w{(i1, τ1) · · · (i′k, τ ′k)},
(2)

where the integrand is

w{(i1, τ1) · · · (i′k, τ ′k)} = DetΔ

× Trloc[Tτe
−βHlocdik(τk)d

†
i′k
(τ ′k) · · · di1(τ1)d†i′1(τ

′
1)]. (3)

Since the impurity and bath degrees of freedom are de-
coupled, the trace over the bath has been performed. The
bath is contained in the determinant of a k×k matrix Δ
with elements evaluated from the hybridization function
(Δ)mn = Δi′min(τ

′
m − τn) whose Matsubara definition is

Δij(iωn) =
∑
μ

V ∗
μiVμj

iωn − εμ
. (4)

The average over the impurity Trloc in general cannot be
further decomposed. Its evaluation requires converting
the sequence of operators (and intervening time-evolution
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operators) into matrices in the basis of the impurity
Hilbert space H.
The Monte Carlo sampling of Eq. 2 proceeds as fol-

lows: the integrands w of the partition function sum
define the weights of a distribution over the configura-
tion space {(i1, τ1) . . . (i′k, τ ′k)} which is sampled with the
Metropolis-Hastings algorithm. At each step, a new con-
figuration is proposed with probability A and accepted
with probability

p = min

(
1,

A′|w|
A|w′|

)
, (5)

where w and w′ are the weights of the new and the old
configuration respectively, and A′ is the proposal proba-
bility of the inverse update.
The bottleneck is that the weights w, and the expensive

impurity trace contained within, must be computed in
order to decide whether to accept each new proposed
configuration. In terms of computational effort, if N =
|H| is the size of the local Hilbert space, and we are sitting
at perturbation order k, the impurity trace costs O(N3k)
while the hybridization determinant costs O(k3) (which
can be reduced to O(k2) for local updates). The average
expansion order 〈k〉, which is typically in the hundreds,
is proportional to the inverse temperature β, whereas
the N grows exponentially with the number of impurity
orbitals (N = 1024 for the d-shell). Thus, except at very
low temperatures, the calculation of the impurity trace
is the bottleneck in these Monte Carlo simulations.
Alluded to in the above discussion, the impurity trace

contains a time-evolution operator between each cre-
ation and annihilation operator, which we denote by
Pτ = e−τHloc . We also write (Fi)mn = 〈m|di|n〉 for
the matrix representation of the creation and annihila-
tion operator, where m and n index the states in H. In
this notation, the impurity trace explicitly becomes an
alternating matrix product:

Trloc Pβ−τkFikPτk−τ ′
k
F †
i′k
· · ·Fi1Pτ1−τ ′

1
F †
i′1
Pτ ′

1
. (6)

For simplicity, we have assumed that the imaginary times
in Eq. 3 are time-ordered as they appear.

B. Symmetries, Sectors and Block Matrices

We can make a key simplification to the impurity
trace using symmetries prior to developing computa-
tional algorithms11. The local hamiltonian Hloc gener-
ally possesses abelian symmetries (e.g. particle number,
spin, momentum), which allow us to decompose the im-

purity Hilbert space as a direct sum H =
⊕N

q=1 H(q).
Here, q enumerates the sectors of the Hilbert space, each
of which is characterized by a definite set of quantum
numbers (e.g. particle number, spin, momentum).
Using these symmetries one defines a new basis for the

creation-annihilation operators. A creation or annihila-
tion operator, which we denote by a generalized index α

formed by combining its quantum numbers with the type
of operator (creation or annihilation), maps each sector q
either to 0 or uniquely to one other sector q′. This leads
to block matrices Fα(q) which can be combined with a
sector mapping function sα

11 defined by sα(q) = q′. The
time-evolution operator maps each sector onto itself.
In the sector basis, the operator product in Eq. 6 be-

comes PFα2k
PFα2k−1

· · ·Fα2PFα1P that maps a sector
q0 onto q2k defined by the string q0 → q1 := sα1(q0) →
· · · → q2k := sα2k

(q2k−1). The impurity trace decom-
poses into a sum over sector traces,

TrPFα2k
· · ·Fα1P =∑

q0

TrP (q2k)Fα2k
(q2k−1) · · ·Fα1(q0)P (q0), (7)

and only sectors q0 which are not mapped on 0 con-
tribute. Such mapping on 0 generally occurs because of
the Pauli principle. In a typical 3d impurity model with
the full atomic Coulomb interaction, the number of sec-
tors is ∼ 100 and the number of surviving strings ranges
from 1 to ∼ 20.

III. SKIP LISTS

We first begin with a motivation for skip lists. Then
the skip list and the way it is used to store matrix sub-
products is described. The final subsection explains how
matrix multiplications can then be performed efficiently
when operators are inserted or removed.

A. Motivation for Skip Lists

At each Metropolis-Hastings step, a matrix product
needs to be computed to decide whether the proposed
configuration is accepted or rejected. One possibility is
to always calculate all the products from scratch. How-
ever, only two matrices are typically inserted or removed,
so this strategy is not only expensive, but also highly re-
dundant.
To avoid multiplying almost all the time the same ma-

trices, we may pair them off and store their product.
This way almost every second multiplication is skipped
when calculating the product of a proposed configuration.
However, this is not yet optimal. One can store products
of four, eight matrices etc. leading to a collection of sub-
products that will allow us to minimize the number of
redundant multiplications. This storage strategy may be
represented as shown in Fig. 2, where we omit the propa-
gators for simplicity. The arrows store the sub-products
of operators they span, including the operator they start
from and excluding the operator they point to.
Inserting now a matrix F , some of the stored sub-

products expire, as shown on the lower panel of Fig. 2.
These are the sub-products of arrows that span over the
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F1F2F4 F3F5F6F7F8

F8 × F7 × F6 × F5 × F4 × F3 × F2 × F1

F8 × F7 × F6 × F5

F8 × F7 F6 × F5

F4 × F3 × F2 × F1

F2 × F1F4 × F3

F1F2F4F5F6F7F8 F3

F2 × F1F4 × F3

F4 × F3 × F2 × F1

F8 × F7

F8 × F7 × F6 × • × F5 × F4 × F3 × F2 × F1

F8 × F7 × F6 × • × F5

F6 × • × F5

×
× ×

×

•

FIG. 2. Top panel: Storage scheme for sub-products of ma-
trices. The arrows store the products of matrices they span
over. The l = 1 level stores the pair products, the l = 2 their
products and so on. Lower panel: The matrix F has been
inserted in the matrix product of the top panel and the prod-
ucts with a bold red multiplication sign need to be calculated
in order to obtain the total product.

inserted matrix. To calculate the product of the pro-
posed configuration, we begin with the arrow just above
the inserted operator. This costs two multiplications,
F6 · F · F5. Moving up, the next missing sub-product
F8F7 · F6FF5 is calculated from the two sub-products
below with one multiplication, and multiplying this sub-
product with F4F3F2F1 yields the total product. Except
at the first level, this involves one matrix multiplication
per level, as each arrow is the product of two arrows one
level below. For 32, 128 and 512 operators, a representa-
tion like that in Fig. 2 has 5, 7 and 9 levels respectively,
and the number of matrix multiplications is logarithmic
in the number of operators in the product. However,
this storage scheme works only if the expansion order
is a power of two, and we have to find a strategy to
maintain an equilibrated structure when inserting or re-
moving matrices at random places. Equilibrated means
that a sub-product is ideally always the product of two
sub-products one level below.
For simplicity, we ignore here the block structure of

the operator matrices. Their discussion is postponed to
Sec. V.

B. Skip Lists and Matrix Products

In Fig. 2, the heights of the vertical bars associated
with the matrices organize the arrows, that is the sub-
products. The original matrices are stored at level l = 0.
There is an arrow starting and ending at the top end of
each bar with level l > 0, except for the first bar on the
right where no arrow ends. When inserting an opera-
tor, we are free to associate a bar to this operator at a

height that we may choose. The choice of skip lists28 is
to take a height l that is determined randomly according
to the distribution 2−l−1, that is, half of the bars are on

P · 1PF1PF2PF3PF4PF5PF6PF7PF8

P F2 P F1 P

P F4 P F3

P F8 P F7

P F6 P F5

P F6 P F5 P F4 P F3

P F8 P F7 P F6 P F5 P F4 P F3 P F2 P F1 P

FIG. 3. Skip list to store sub-products of operators Fi and
propagators P . The arrows store the products they span over.
The bold arrows in red and green show the path that is fol-
lowed when a matrix is inserted at the place indicated by the
red triangle. The products stored in the blue arrows are emp-
tied if their tail coincides with that of the bold red arrows.

average at least level one, a quarter at least level two,
and so on. This keeps the skip list on average equili-
brated. A typical arrangement is shown in Fig. 3. Here
we include the propagators, and an arrow stores the sub-
product starting with the operator at its tail and ending
with the propagator at its head. However, to include the
first propagator P appearing on the right, we need to
store the product of P with the identity matrix at the
first bar. Since the heights are chosen randomly, there is
no guaranty that the height of that first bar exceeds all
others as in Fig. 2. Hence we just assume that it is at a
height that exceeds all others.
To calculate the product after insertion of one operator

in this skip list, we can proceed as in Fig. 2 if the ran-
domly chosen height of the associated bar is zero. This
changes if the height is not zero. More importantly, two
operators and sometimes more must be inserted or re-
moved at once in Monte-Carlo simulations,31 whereas the
product is needed at the end only. Also, combinations of
insertions and removals are sometimes necessary to make
the sampling more efficient. Hence, we need a flexible
multiplication algorithm, which is discussed in the next
section.

C. Skip Lists and Matrix Multiplication

To calculate the new product after an arbitrary se-
quence of insertions and/or removals with a minimal
number of matrix multiplications, we proceed in two
steps. First the matrices are inserted and/or removed,
one after the other. At each time, this invalidates some
sub-products M = PF....PF , stored in the blue arrows.
These sub-products are thus emptied. Once the new con-
figuration is proposed, the product is calculated by filling
up the emptied sub-products.
When inserting an operator in the skip list, a sub-

product expires if the operator lies between the head and
the tail of the corresponding arrow, see Fig. 3. To iden-
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tify all such arrows, we follow the skip list insertion algo-
rithm28 and begin at the tail of the top arrow. This arrow
necessarily spans over the operator to insert, and its sub-
product is emptied. Moving down the red arrow on the
right in Fig. 3 to the next lower blue arrow, we test if the
operator to insert lies between the head and tail of this
arrow. If yes, the sub-product is emptied, and the next
lower blue arrow is tested. If not, the arrow is traversed
and the process is repeated until we end up by emptying
the sub-product at the blue arrow just above the place
where the operator will be inserted. Proceeding likewise
for removal, all expired sub-products are emptied once
the new configuration is proposed32.

To fill up the emptied sub-products M once the in-
sertions and/or removals are completed, we proceed re-
cursively. The sub-product at an arrow A can be calcu-
lated from the sub-products Ma,Ma+1, . . .Mb stored at
the arrows Aa,Aa+1, . . . ,Ab just below. If all of these
sub-products have not been emptied, they are multiplied
while traversing the arrows Aa → Aa+1 → · · · and the
result is stored at the arrow A. If however one of the
sub-products Mi at an arrow Ai is missing, we recur-
sively calculate this sub-product from the sub-products
below the arrow Ai. This recursion stops at the latest
at the bottom of the skip list, where the operators are
multiplied with the propagators. The total product is
obtained by starting the recursion at the top arrow.
Once the new product is calculated, we decide whether

to accept or reject the proposed configuration. To recover
the skip list in case of rejection, a backup is taken at the
beginning of a trial step.

IV. LAZY TRACE EVALUATION

In the regimes of interest (moderate to low tempera-
tures T � 100 K, strong Coulomb interaction U � 5 eV),
the probability of accepting a proposed move is low,
generally lying below 10% and often below 1%. The
Pauli principle and time-evolution operators e−ΔτHloc

place strong constraints on the insertion/deletion of oper-
ators, causing the low acceptance probabilities. Develop-
ing techniques to reject improbable moves with minimal
computational effort is crucial.
The Pauli constraint is computationally neglegible, as

it can quickly be determined by following the string of
sector mappings q0 → q1 → q2 · · · and checking that not
all strings are annihilated (i.e. mapped to 0). In contrast,
the time-evolution operators are interspersed within the
matrix product. Proposed moves often drive transitions
to high-energy sectors, where the exponentials e−ΔτHloc

strongly suppress the acceptance probability. Here, we
describe a “lazy trace” algorithm which leverages these
exponentials to efficiently reject moves with low accep-
tance probability, largely avoiding a full evaluation of the
impurity trace.
The first component of the lazy trace algorithm29 is

fast bounding of the impurity trace in each symmetry

FIG. 4. The bounding technique within the lazy trace evalua-
tion. We first flip a coin to obtain a random number u ∈ [0, 1].
Then, using sub-multiplicative matrix norms, we compute ini-
tial bounds pmin < p < pmax on the acceptance probability.
The bounds are refined until u falls outside [pmin, pmax] and
the move can be definitively accepted or rejected.

sector. Writing in shorthand Eq. 7 as Tr =
∑

q Trq, as-

sume we can quickly compute bounds Bq ≥ |Trq | for
each sector trace. This provides a maximum bound on
the trace via the triangle inequality:

|Tr | ≤
∑
q

|Trq | ≤
∑
q

Bq. (8)

Using the expression for the acceptance probability p
(Eq. 5), and writing the weight of the old configuration
as w′ = Det′ ·Tr′, we obtain an upper bound

pmax =
A′

A

|Det |∑q Bq

w′ . (9)

This bound can be refined as follows: take the sector qmax

with the largest Bq and compute the exact sector trace
Trqmax . Applying the reverse triangle inequality gives∣∣∣|Tr | − |Trqmax

|
∣∣∣ ≤ ∑

q �=qmax

Bq, (10)

producing refined bounds

(
pmax

pmin

)
=

A′

A

|Det |
w′

⎛
⎝|Trqmax

| ±
∑

q �=qmax

Bq

⎞
⎠ . (11)

This procedure can be continued, generating successively
tighter bounds, until we obtain the exact trace. The
sequence of bounds is likely to tighten most rapidly if we
choose the sectors in decreasing order of Bq.
The second key idea is to flip the Monte Carlo coin first

to obtain the acceptance threshold u, before computing
the above approximation to the acceptance probability.
If pmax < u, and it often is, we can reject the move out-
right. If pmin > u we accept the move. If neither of these
possibilities occur, we successively refine the bounds on
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p until we can either accept or reject the move, as il-
lustrated in Fig. 4. In the following, we describe the
construction of the bounds Bq.
The basic equation is the formula

|TrA1A2 · · ·An| ≤ C · ‖A1‖ ‖A2‖ · · · ‖An‖ , (12)

proven in Appendix A. Here Ak are matrices (not neces-
sarily square, although the entire product must be), ‖·‖
is a sub-multiplicative matrix norm, and C is a constant
which depends on the specific matrix norm chosen and
the dimension of the matrices. In the lazy trace algo-
rithm, the spectral norm (see Appendix A) is used. For
rectangular matrices Al ∈ R

Nl×Ml , the constant C be-
comes the dimension of the smallest matrix within the
product, C = min{Nl}. The spectral norm is unity for
a creation or annihilation operator, and e−ΔτiE0(qi) for
time-evolution operator, where E0 is the ground state
energy of the sector qi and Δτi is the time spent in this
sector.

Application to the trace of a single sector in Eq. 7 gives

|TrP (q2k)Fα2k
(q2k−1) · · ·Fα1

(q0)P (q0)|

≤ min{dimH(qi)} · exp
(
−

2k∑
i=0

ΔτiE0(qi)

)
, (13)

While extremely cheap to calculate, this bound precisely
captures the vast variations in magnitude caused by ex-
ponentials in the time-evolution operators. The bounds
for each sector Bq decrease extremely rapidly; in many
cases, the initial pmax is sufficient to reject a proposed
move.

When a move is accepted, the trace needs to be eval-
uated exactly, up to numerical accuracy, to be able to
compute the acceptance probability of the next move.

V. LAZY SKIP LISTS

In this section, we begin by combining the algorithms
presented in Sec. III and Sec. IV. In a second step, we
show how the bounds on the sector traces in Sec. IV may
be improved using this combined algorithm.

A. Skip Lists and Lazy Trace Evaluation

When iteratively refining the bounds in the lazy trace
evaluation, we only need the contribution to the trace of
one sector q0 at a time in Eq. 7. To achieve this with the
skip lists in Sec. III B, we begin by taking into account
the block structure of the matrices.

The operators F and the sub-products M are stored
in their block form as pairs s(q), F (q) and s(q),M(q) of
mapped sectors and corresponding matrix blocks. Sim-
ilar to the total product which splits into strings in

Sec. II B, this splits a sub-product PFb · · ·PFa into sub-
strings P (qb+1)Fb(qb) · · ·P (qa+1)Fa(qa). Such a sub-
string is stored in the matrix block M(qa) together with
the mapped sector s(qa) := qb+1.

To calculate one string in the total product, we only
need one of the sub-strings of a given sub-product. When
recursively updating the sub-products in the skip list as
in Sec. III C, we thus have to specify at each arrow A the
requested sub-string by a start sector qa. To select the
entries in the block matrices Mi (stored in Ai below A)
which need to be multiplied to obtain the requested sub-
string Mb(qb) · · ·Ma+1(qa+1)Ma(qa), one maps the start
sector qa into qb−1 using the sector mappings si at the
arrows Ai, namely qa → qa+1 := sa(qa) → · · · → qb :=
sb−1(qb−1). The product is then stored in the matrix
block M(qa) at the arrow A, together with the mapped
sector s(qa) := qb+1. Again, if a matrix block Mi(qi) at
an arrow Ai is empty, we proceed recursively.
The combination of the skip lists and the lazy trace

evaluation is now straightforward. First, expiring sub-
strings are emptied when inserting and/or removing op-
erators in the skip list, similar to Sec. III C. Once the new
configuration has been proposed, we start the recursion
at the top arrow of the skip list separately for each sector
needed by the lazy trace evaluation.

B. Sub-products and Trace Bounds

The bounds on the sector traces in Eq. 13 are calcu-
lated from the product of the norms of each propagator
and operator individually. Tighter bounds may be ob-
tained by using the norms of stored sub-products. In
Fig. 2 for example, the trace is bounded by

|Tr| ≤ C · ‖F8F7‖‖F6‖‖F‖‖F5‖‖F4F3F2F1‖ (14)

after insertion of the matrix F . Such bounds for a given
sector trace Trq are obtained recursively, in a manner
analog to the block-matrix product of the corresponding
string.

Calculating the spectral norm of a stored matrix block
is expensive, so the Frobenius norm is used here instead.
While this norm is larger than the spectral norm, its nu-
merical cost is small compared to a matrix multiplication.
However, this means that this bound is not necessarily
smaller than the one in Sec. IV. Other choices for the
norms are discussed in Appendix A

VI. TWO EXAMPLES

In this section we benchmark the skip lists (Sec. III
taking into account the block structure described in
Sec. VA), the lazy trace evaluation (Sec. IV) and the
lazy skip lists (Sec. VA and Sec. VB). To this end,
we consider Anderson impurity problems that appear
in DFT+DMFT electronic structure calculation for thin
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FIG. 5. Benchmark of different optimizations presented in
this paper on the basis of a LNO thin film simulation (a)
and a FeTe simulation (b): using efficient updates with high
acceptance ratio (top panel) and standard updates with low
acceptance (lower panel). We measure speedup, reduction in
matrix-multiplications and reduction in floating-point oper-
ations within matrix-multiplications, with a straightforward
implementation (Sec. II B) as baseline.

film of LaNiO3 (LNO)27,33 and FeTe bulk compound4,
using experimental structure of Ref. 34 and Ref. 35, re-
spectively

In both cases, the impurity is a d-shell system, and the
associated Hilbert Space splits into 132 sectors. The ex-
pansion orders are 〈k〉 ≈ 225 for LNO and 〈k〉 ≈ 515 for
FeTe. The benchmarks are performed using two kinds
of Metropolis-Hastings updates: i) standard ones,36 with
low acceptance ratio and ii) efficient ones,37 with accep-
tance ratio higher by a factor 10 to 25.

Fig. 1 shows the speedups of the different optimizations
presented in this paper compared with, as a baseline, a
straightforward implementation (Sec. II B) that takes the
block structure into account. Note the logarithmic scale.
The skip lists alone accelerate the simulations for both

test cases by a factor of about 20. While the lazy trace
evaluation gives a substantial speedup for LNO, essen-
tially no speedup is obtained for FeTe. This also shows
in the performance of the combined algorithms, the lazy
skip lists, which, with speedups of order 500, perform
much better for LNO. The reasons for this difference be-
tween LNO and FeTe will become clear below.

Fig. 5 shows, in addition to the speedup, the reduction
in matrix multiplications and the reduction in floating
point operations. While combining different optimiza-
tions does not always result in an additional speedup,
in our case the lazy trace evaluation and the skip lists
work well together. The reduction in matrix multiplica-
tions for the lazy skip lists (Sec. VA) is essentially the
product of the reductions for the lazy trace evaluation
and the skip lists separately. While the reduction in ma-
trix multiplications for the lazy skip lists in Sec. VB is
less evident to anticipate, there is always an additional
speedup that comes from calculating the bounds using
the norms of the stored sub-products in the skip list.

Note that speedups are smaller than expected from the
reduction in matrix multiplications and floating point op-
erations, in particular for the lazy skip lists of Sec. VB.
This is due to the optimization overhead and to the fact
that other parts than the local trace evaluation in the
CT-HYB expansion, such as the evaluation of the deter-
minants, are beginning to take a significant proportion
of the total time.

To understand why most of the speedup comes from
the lazy trace evaluation for LNO while it comes from
the skip list for FeTe, it is useful to consider the sector
weights. We use standard updates. In Fig. 6a) we show
results for LNO and in Figs. 6b) results for FeTe. Note
the logarithmic vertical scales. The top panels display
the average weights 〈Trq/Tr〉 of the various sectors in
the partition function expansion. The lower panels of
Figs. 6a) and b) show for each sector q the frequency of
Trq evaluation.

Consider first the case of LNO. In contrast to the base-
line, it is clear in Fig. 6a) that the sector frequencies for
the lazy trace evaluation are largely proportional to the
sector weights. Only a few sectors with N = 7 to 8 col-
lect most of the weight, and this not only shows where
the large reduction in matrix multiplications in Fig. 5a)
comes from, but also why the reduction in floating point
operations is even bigger. Indeed, the sectors with N = 7
to 8 have generally smaller dimension than the ones with
N = 4 to 6 which are not calculated most of time in the
lazy trace evaluation.

Given their negligible sector weights, it would also be
possible in principle to just drop the sectors with N = 0
to 3. However, the gain from this is small since these sec-
tors have rather small dimension. Dropping the sectors
with N = 4 to 6 involves more important approximations
so one would need careful checks that the truncated sec-
tors do not affect the results. The lazy trace evaluation
avoids the calculation of these sectors most of time and
there is no approximation involved.
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FIG. 6. On the basis of a LNO thin film simulation (a) and of
a FeTe simulation (b) with standard updates: average weight
〈Trq/Tr〉 of a sector q in the partition function expansion (top
panel) and frequency with which Trq is calculated for a sector
(lower panel).

Moving to the case of FeTe in Fig. 6b), one notices that
the sector weights are more uniformly distributed. There
are fewer sectors with extremely small weights. Hence the
lazy trace evaluation does not give a substantial speedup.
The skip lists on the other hand still reduce the number
of matrix multiplications.

VII. DISCUSSION AND CONCLUSION

Quantum Monte Carlo algorithms generally involve
multiplications of large matrices. In the case of the
strong-coupling based CT-HYB algorithm, this is a lim-
iting factor. When updates generate new configurations
that have a large probability of being rejected, we have
shown that an efficient way of speeding up the algorithm
is to first choose the random number and then use ma-

trix norms to bound the Metropolis rejection/acceptation
probability. This is called lazy trace evaluation. Skip
lists on the other-hand provide a way to store interme-
diate matrix products and avoid in all circumstances the
recomputation of some of the matrix-products. The com-
bination of both algorithms, lazy skip lists, provides a ro-
bust algorithm that guarantees large speedups when the
trace evaluation takes a large fraction of the computing
time.

The speedup of the trace evaluation achieved with the
lazy skip lists algorithm is such that parts of CT-HYB
that usually take negligible time compared with the eval-
uation of the trace, for example measurements, calcula-
tion of determinants etc., can now become the limiting
factor.

Skip lists allow control of memory requirements by
changing the probability p to add a level to an inserted
bar after an update. We have not discussed further im-
provements in speed that can be obtained by using the
associative property of matrix multiplication to speedup
the calculation of products of rectangular matrices, or
many other possible optimizations that are dependent on
computer architecture, such as caches, parallelism etc.

Some of the ideas developed here can be directly ap-
plied to other problems treated by Monte Carlo methods.
For example the rejection method based on bounds (see
Fig. 4) can be applied to classical Monte-Carlo simula-
tions for spins with long-range interactions:38 Take an
Ising spin system and consider a single spin-flip Monte
Carlo update. The energy associated with this spin can
be bounded by

Ei,[min,max] = Si

∑
j≤R

Ji,jSj ± Si

∑
j>R

|Ji,j | . (15)

The bounds can be refined by successively increasing the
range R. The sums over absolute values of exchange con-
stants need to be calculated only once. Similar problems
are encountered in spin-ice models with dipolar interac-
tions,39 ordered and/or random spins with both dipolar
and RKKY interactions.

Speedups by factors in the hundreds that can be
achieved with the lazy skip lists algorithm will bring new
physical regimes in correlated electronic-structure calcu-
lations and cluster generalizations of dynamical mean-
field theories within reach of computational power. Ap-
plications of such methods extend as far as molecular
biology.40
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Appendix A: Trace Bounds via Matrix Norms

Different matrix norms give different bounds for the
magnitude of the trace of a matrix product. We consider
here induced norms

‖A‖p := max
‖x‖p=1

‖Ax‖p,

where A ∈ R
N×N , x ∈ R

N and ‖x‖p := (
∑

i |xi|p)1/p
with p ≥ 1, and the Frobenius norm

‖A‖F :=

(∑
ij

A2
ij

) 1
2

.

1. Induced Norms

For the induced norms, one obtains |Aii| ≤ ‖Aei‖p ≤
‖A‖p, where ei is the standard basis of RN , and hence

|TrA| ≤ N · ‖A‖p.

This immediately generalizes to a product∣∣∣∣∣Tr
n∏

l=1

Al

∣∣∣∣∣ ≤ min{Nl} ·
n∏

l=1

‖Al‖p (A1)

of rectangular matrices Al ∈ R
Nl×Ml , since induced

norms are sub-multiplicative. From the cyclicity of the
trace, the pre-factor in Eq. 12 becomes C = min{Nl} =
min{Ml}, the minimal row or column dimension of all
the matrices within the product.

For a propagator Pτ , written in the eigenbasis, one
obtains ‖Pτ‖p = exp(−τE0), where E0 is the smallest
eigenvalue. These norms are hence well suited for the lazy
trace evaluation in Sec. IV. Especially convenient is the
spectral norm (p = 2). This norm is one for annihilation
or creation operators since

‖d‖2 = max
〈ψ|ψ〉=1

√
〈ψ|d†d|ψ〉 = 1

by the Pauli principle, and only the exponentials of the
propagators enter into the bound given in equation (A1).

2. Frobenius Norm

For the Frobenius norm, Cauchy-Schwarz states

|TrAB| ≤ ‖A‖F · ‖B‖F ,
and as the Frobenius norm is sub-multiplicative∣∣∣∣∣Tr

n∏
l=1

Al

∣∣∣∣∣ ≤
n∏

l=1

‖Al‖F , (A2)

where n ≥ 2. The Frobenius norm is numerically cheap,
so equation (A2) can be used for the lazy skip lists in
Sec. VB. Other numerically cheap choices are the in-
duced norms with p = 1 and p = ∞.
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Conclusion

A breakthrough in the study of strongly correlated systems within quantum cluster ap-

proaches has occurred with the advent of the continuous-time quantum Monte Carlo im-

purity solvers. The continuous-time hybridization expansion (CT-HYB) impurity solver

is particularly well suited for the strong and complex interactions encountered in the con-

text of real material simulations. The main objective of this thesis was to improve CT-

HYB, regarding its efficiency and reliability in order to explore new regimes of strongly

correlated materials. In the case of the layered organics, this was achieved by proper

choice of basis to minimize the sign problem, allowing for results with the necessary

precision for critical behavior considerations. Within the context of high-Tc supercon-

ductors, we fixed an ergodicity problem. Finally, we presented algorithmic optimizations

of CT-HYB, resulting in substantial speedups within the context of real material simu-

lations.

The sign problem in fermionic Monte Carlo simulations, originating in the Pauli principle,

sets fundamental limitations on the applicability of this powerful integrator to strongly

correlated systems. Kinetic frustration, as realized in the layered organics, usually in-

volves a severe sign problem. Using cellular dynamical mean field theory (CDMFT) for

a frustrated Hubbard Hamiltonian, we showed that the sign problem of the CT-HYB

impurity solver is alleviated by orders of magnitude by choosing a suitable one-particle

basis for the impurity. Further, we gave a recipe for choosing the best basis in advance.

This allowed us, based on simulations, to identify subleading corrections as a possible ex-

plication for the unexpected criticality of the Mott transition observed in these strongly

correlated materials. Within this interpretation, no new universality class is needed.

This was discussed in chapter 3.

89
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Ergodicity is a crucial ingredient for reliable Monte Carlo simulations. In chapter 4,

we showed that for impurity problems arising in the context of broken symmetries in-

volving spatial components, CT-HYB is generally not ergodic when using the standard

updates of inserting or removing two operators. Considering the example of d-wave super-

conductivity in the Hubbard model within the CDMFT approximation, we showed that

four operator updates cure the problem in this case. Our findings reconcile the results

obtained by the CT-HYB impurity solver with the results obtained by other impurity

solvers. In a second step, we discussed the updates necessary to restore ergodicity in the

case of general broken symmetries, mentioning specific examples of broken symmetries

within CDMFT where the standard updates are not ergodic.

The explicit treatment of interactions in the CT-HYB solver, making this solver partic-

ularly well suited for atomic impurities, comes along with a computationally expensive

matrix product which needs to be evaluated at each Monte Carlo step. Taking advantage

of the large redundancy in matrix multiplications when using local updates, we presented

in chapter 5 a flexible and elegant algorithm based on skip lists, which results in speedups

of up to ∼ 20 by storing sub-products. This algorithm was combined with the lazy trace

algorithm presented in [42] to form the lazy skip lists, combining optimally the two in-

dependent optimizations. Lazy skip lists reduce matrix multiplications by a factor of up

to ∼ 10000, and parts of the CT-HYB algorithm other than the matrix multiplications

begin now to take a substantial amount of time.

These results allow new investigations in three broad directions: first, our strategy for

reducing the sign problem works whenever there is a degree of freedom in the choice of

the one particle basis, and may not only save a lot of cpu-hours, but make simulations

possible at all. Second, broken symmetries are among the most fascinating phenomena,

and a reliable tool for their study in strongly correlated systems is a step forward in their

understanding. The lazy skip lists finally represent a significant advance in the realistic

modeling of strongly correlated systems, opening the door to new materials and phys-

ical regimes. We achieved speedups of up to 500, but better ones are likely for f -shell

systems. The C++ code presented in appendix D will be included as an impurity solver

within ABINIT, an open source band structure code.



Appendix A

Convergence of the weak coupling

expansion

Consider the weak coupling expansion of the partition function of a single site Hubbard

impurity model

Z

Z0

=
∑
k≥0

∫ β

0

dτ1 · · ·
∫ β

0

dτk
(−U)k

k!
〈Tτn↑(τk) · · ·n↑(τ1)n↓(τk) · · ·n↓(τ1)〉0, (A.1)

where 〈·〉0 = Z−1
0 Tr[e−βH0 ·]. For a Monte Carlo sampling, this series has to converge

absolutely. As |〈Tτn↑(τk) · · ·n↑(τ1)n↓(τk) · · ·n↓(τ1)〉0| ≤ 1, this is the case if one uses a

determinant to sum up all contractions for a given configuration. The situation changes

if one tries to sample the Feynman diagrams individually, as we shall see now. Note

that, in general, there is a g0 > 0 such that the non-interacting Green function on the

impurity satisfies |G0(τ)| ≥ g0 for all τ ∈ (0, β). Hence the absolute value of a contrac-

tion at expansion order k is bigger than g2k0 , and as there are k!2 contractions for a given

configuration, the sum of the absolute value of all Feynman diagrams diverges.

This observation may be interesting when trying to sample the Luttinger-Ward func-

tional, where the diagrams cannot be summed up into a determinant.
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Measurement of the Green function

The Green functions in equations (2.47) and (2.64) are obtained from an estimate of the

form1

〈
∑
ij

eiωn(τi−τ ′j)Mij〉MC, (B.1)

where 〈·〉MC denotes the Monte Carlo average. One way to avoid evaluating the exponen-

tials for every Matsubara frequency each time a measurement is taken starts by dividing

the interval I := [−β, β] into sub-intervals Iq := [qβ/N, (q+1)β/N ], where −N ≤ q < N .

On each of these sub-intervals, the exponential is approximated by a Taylor series as

eiωnτ ≈
L∑
l=0

Anq
l (τ − cq)

l, (B.2)

where cq is the center of the interval Iq. Measuring the moments

M q
l := 〈

∑
τi−τj∈Iq

(τi − τj − cq)
lMij〉MC (B.3)

on each interval Iq during the Monte Carlo simulation, the estimate in equation (B.1) is

approximated as

〈
∑
ij

eiωn(τi−τj)Mij〉MC ≈
N−1∑
q=−N

L∑
l=0

Anq
l M q

l . (B.4)

1Spin and spatial indices are omitted here for simplicity.

92



Chapter B : Measurement of the Green function 93

The error of this approximation scales as N−(L+1), and the memory requirement is (L +

1)N .2 Setting L = 0 corresponds to the usual binning. However, setting L > 0 allows

for example to get better precision with the same memory requirement, at the cost of

L multiplications per measurement. With L = 2 − 6, this approach lies in some sense

between the usual binning and the orthogonal polynomials presented in [13], which further

reduce the memory requirement at the cost of more multiplications per measurement.

Compared with equation B.1, this method is advantageous as soon as L is smaller than

the number of measured Matsubara frequencies.

2The aperiodicity of the Green function can be used to reduce the memory requirement from 2(L+1)N
to (L+ 1)N .



Appendix C

A CT-INT implementation in C++

This chapter is a user guide for a C++ implementation of the CT-INT impurity solver.

The solver comes along with a DCA self-consistency for the 2D Hubbard model and is

restricted to a rectangular Hubbard impurity. The codes are based on the ALPS libraries

[5]. Only the aspects of ALPS relevant for using the codes are considered here, visit the

web site http://alps.comp-phys.org/ for more information and how to install ALPS

(the application part of ALPS is not needed here).

Except for the size of the cluster, all parameters for a simulation are listed in a pa-

rameter file as

1 ITERATION=0;

2

3 SEED=8245;

4 THERMALIZATION=10000;

5 SWEEPS=1000000;

6 NMEAS=50;

7 NALPSMEAS=10;

8 PROBFLIP=0.25;

9

10 CLEANUPDATE=5000;

11 NMAT=200;

12 NIT=10000;

13

94
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14 weightR=0.2;

15 weightI=0.0;

16 delta=0.05;

17 beta=30;

18 U=0;

19 mu=0;

20 t=1;

21 tPrime=0;

22

23 {}

Here we are at ”ITERATION” zero for solving the DCA self-consistency. ”SEED”,

”THERMALIZATION” and ”SWEEPS” are the seed for the pseudo random number

generator, the thermalization and the total number of Monte Carlo sweeps 1 respectively.

Samples are taken every ”NMEAS” sweeps and passed to ALPS every ”NMEAS” ×
”NALPSMEAS” sweeps. The probability to propose an auxiliary spin flip is ”PROBFLIP”,

the other updates are insertion and removal of a vertex as described in section 2.2.2.

The parameter ”CLEANUPDATE” specifies that the inverse of Mσ
k of D̃σ

k in section

2.2.2 is recomputed from scratch every 5000 sweeps to avoid error propagation from the

Shermann-Morrison formula. ”NMAT” is the number of Matsubara frequencies which

are measured during the simulation (we use the method presented in appendix B) and

”NIT” specifies the imaginary time grid used for the non-interacting Green function G̃0
rr′

in section 2.2.1. The parameters ”weightI” and ”weightR” mix the hybridization from

one iteration to the next as discussed in section 1.1. The auxiliary field can be adjusted

with the parameter ”delta” as discussed in section 2.2.1. The rest of the parameters

specify the inverse temperature ”beta” and the 2D Hubbard model with dispersion

ε(kx, ky) = −2t(cos(kx) + cos(ky)) − 4t′ cos(kx) cos(ky), (C.1)

interaction ”U” and chemical potential ”mu”.

The name of the parameter file has to be followed by an underscore and the iteration as

for example ”dca 0” at iteration 0. This iteration has to match with the ”ITERATION”

in the parameter file.

1A sweep is defined as one Metropolis-Hasting update.



Chapter C : A CT-INT implementation in C++ 96

At the beginning of a simulation, the parameter file is converted into two .xml files by

the command

1 parameter2xml dca_0

that is dca 0.in.xml and dca 0.task1.in.xml in this case. Next, the self-consistency is

called as

1 ./SC dca 0

in the shell. Notice here that there is no ” ” between the name of the parameter file

and the iteration. At iteration 0, this generates a guess of the hybridization function

starting from a Hartree-Fock self-energy, c.f. section 1.1, and a parameter file ”dca 1”.

The hybridization is contained in the file ”hyb 1.dat”. Converting the new parameter

file into and .xml files, the impurity solver is called as

1 ./IS dca_1.in.xml

At the end of the Monte Carlo simulation, measurements of observables are contained in

the file ”dca 1.out.xml” and the associated files. Calling the self-consistency

1 ./SC dca 1

extracts the Green function and other observables and generates a parameter file ”dca 2”

as well as a hybridization file ”hyb 2.dat” for the next iteration. The Green function and

the self-energy are contained in the files ”green 1.dat” and ”self 1.dat”. These files con-

tain as columns first the Matsubara frequency and then, for each cluster momentum K,

the real and imaginary part of the respective function. The cluster momenta are enumer-

ated as shown in figure (C.1). The occupation and the double occupancy are appended

to the files ”Occupation.dat” and ”DoubleOccupation.dat” together with the iteration.

This iterative procedure is repeated until the solution is converged.

At each iteration, except at the iteration 0, we call thus first the ”parameterxml” com-

mand, then the impurity solver and finally the self-consistency to extract the measure-

ments and to generate the parameter file and the hybridization for the next iteration.

To begin a simulation with a converged solution from another simulation, rename the

corresponding hybridization file into ”hyb 1.dat” and start at iteration 1.

The size of the cluster is specified in the main C++ files ”IS.C” and ”SC.C” by template

parameters as
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Figure C.1: Tiling of the lattice Brillouin zone in DCA for a rectangular cluster with
4 sites in x direction and 2 sites in y direction. Measured quantities, such as each pair
of real and imaginary parts of the Green functions, appear in different columns for each
value of K. The K are ordered as shown in the figure.

1 typedef MC <DCA_2D<4, 2> > _MC;

and

1 typedef SC <DCA_2D<4, 2> > _SC;

respectively. Here the rectangular cluster has 4 sites in x direction and 2 sites in y

direction, see figure (C.1). Changing the cluster shape necessitates hence recompiling the

codes. The patches RK, see section 1.2, are rectangles centered on the cluster momenta

K, see figure (C.1).



Appendix D

A generic and fast CT-HYB

implementation in C++

This appendix is a user guide for a CT-HYB implementation in C++ including all the

optimizations presented in chapter 5. To start with, we first restate the expansion in

equation (2.78)

Z =
∑
k≥0

∑
α1···αk

∑
α′
1···α′

k

∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk

∫ β

0

dτ ′1 · · ·
∫ β

τk−1

dτ ′k

× TrTτe
−βHlocdαk

(τk)d
†
α′
k
(τ ′k) · · · dα1(τ1)d

†
α′
1
(τ ′1)

× 〈V̂ †
αk

(τk)V̂α′
k
(τ ′k) · · · V̂ †

α1
(τ1)V̂α′

1
(τ ′1)〉.

(D.1)

As discussed in Sec. (2.3.2), it is numerically favorable to choose a one particle basis

dα which transforms as the irreducible presentations of the (abelian) impurity symmetry

group. In this basis, the hybridization function matrix Δα′α(τ ′ − τ) = 〈V̂ †
α (τ)V̂α′(τ ′)〉

usually acquires a block-diagonal form. In normal phase, the blocks regroup flavors be-

longing to the same irreducible representation. We denote these sets by Il. In a broken

symmetry phase, the blocks generally regroup flavors of different irreducible presenta-

tions. These sets are unions of the Il, and we denote them by Sm. The entries of Δα′α

are thus finite only if α′ and α belong to the same Sm. That is, only configurations in

equation (D.1) with the same number of α and α′ in a Sm have a finite contraction, and

98
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it is convenient to write the expansion in equation (D.1) as

Z =
∏
m

∑
km≥0

∑
αm
1 ···αm

km
∈Sm

∑
α′m
1 ···α′m

km
∈Sm

∫ β

0

dτm1 · · ·
∫ β

τmkm−1

dτmkm

∫ β

0

dτ ′m1 · · ·
∫ β

τ ′mkm−1

dτ ′mkm

× Tre−βHloc

∏
m

dαm
km

(τmkm)d†α′m
km

(τ ′mkm) · · · dαm
1
(τm1 )d†α′m

1
(τ ′m1 )

×
∏
m

DetΔm
km .

(D.2)

where (Δm
km)ij := Δα′m

i αm
j
(τ ′mi − τmj ).

As an example, consider CDMFT for a Hubbard model on an anisotropic triangular lat-

tices with a 2x2 plaquette (see chapter 3). The one- particle basis of the impurity has two

copies of the A1 representation, and one of the B1 and B2 representation respectively.

The A2 representation is empty. The flavor sets are thus I1 = {↑ A1, ↑ A′
1}, I2 = {↑ B1}

and I3 = {↑ B2} for spin up and I4 = {↓ A1, ↓ A′
1}, I5 = {↓ B1} and I6 = {↓ B2} for

spin down. Here the sets Il and Sm coincide, as this is normal phase. We now discuss

the entry files for this example.

The parameter file here reads

1 SWEEPS = 100000;

2 THERMALIZATION = 10000;

3 NMEAS = 20;

4 NALPSMEAS = 5000;

5 CLEANUPDATE = 100;

6

7 beta = 10;

8 mu = 0;

9

10 ATOMIC=Atomic.json;

11 HYB =Hyb.json;

12 LINK=Link.json;

13 UPD=Updates.json;

14 OBS=Obs.json;

15 EGreen = 15;
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16 EHyb = 15;

17 EObs = 15;

18 {}

The first 7 parameters have the same meaning as for the CT-INT impurity solver. The

parameter ATOMIC specifies the file containing the annihilation operators dα on the

impurity, listed by their flavor α. The same file also contains the impurity eigen-energies,

and is discussed in section D.1. For the hybridization function we proceed in two steps.

First the function entries in Δα,α′ are defined in Matsubara frequencies in the HYB file in

section D.2. Each of these functions is labeled, and in the LINK file we associate flavors

α and α′ with these labels. This then defines the hybridization function Δα,α′ and is

discussed in section D.3. In the same file the flavors are regrouped according to the sets

Il and Sm defined above. In section D.4 the UPD file specifying the updates is discussed,

and in section D.5 we finally show how to define observables in the OBS file. The three

remaining parameters will be discussed in the next sections as well.

The impurity solver is started with

1 ./IS params.in.xml

and the main C++ file is IS.C, as in section C.

The format of the entry files is .json, a light version of javascript. This format offers

two structures, an array [v1, v2, . . . , vn] of values and a set {k1 : v1, k2 : v2, . . . kn : vn} of

key and value pairs. The keys ki are strings, that is for example ”hallo”, and the values

vi can be numbers, strings or other arrays and sets. The example

1 {
2 "patrick": {
3 "height": 1.85,

4 "position": "PhD"

5 },
6 "some numbers": [1, 3, 4, 4]

7 }

shows a set with two fields, ”patrick” and ”some numbers”. The value of ”patrick” is

again a set, whereas the value of ”some numbers” is an array.
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D.1 The ATOMIC file

Using impurity symmetries as discussed in section (2.3.2), the impurity eigenstates are

regrouped according to their quantum numbers to form sub-spaces |Q,m〉, where Q labels

the quantum numbers and m enumerates the basis within a sub-space. The correspond-

ing eigenvalues are denoted by EQ,m. Each of the impurity operators maps a subspace

Q on another subspace Q′ or zero. We assume here that the quantum numbers are enu-

merated as Q = 1, 2, . . . and reserve Q = 0 for the zero of the impurity Hilbert space.

The ATOMIC file has two keys

1 {
2 "Propagator": [ ... ],

3 "Operators": { ... }
4 }

specifying the eigen-energies of the impurity (”Propagator”) and the impurity annihila-

tion operators (”Operators”). The creation operators are not entered, as they are given

by the hermitian conjugates of the annihilation operators.

D.1.1 Eigen-energies

The eigen-energies of a given subspace Q are entered in a .json set as

1 {
2 "Energies" : [ -2.48770, -1.1102, ..... ],

3 "Filling" : 3,

4 "Sector" : 17

5 }

where the key ”Energies” contains the eigen-energies [EQ,1, EQ,2, . . . ]. The sector here

is Q = 17 (”Sector”) and the total particle number (”Filling”) of this sector is 3. The

filling is necessary for substracting the term μN from the eigen-energies.

The ”Propagator” key of the ATOMIC file then lists all the subspaces in an array as

1 "Propagator" : [

2 {
3 "Energies" : [ 0.0, 2., ... ],
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4 "Filling" : 0,

5 "Sector" : 1

6 },
7 {
8 "Energies" : [ 0.0, 4.0, ... ],

9 "Filling" : 1,

10 "Sector" : 2

11 },
12 .

13 .

14 .

15 {
16 "Energies" : [ -1., .0, ... ],

17 "Filling" : 4,

18 "Sector" : 80

19 }
20 ]

The ordering of the sub-spaces in this array is arbitrary as the ”Sector” key identifies

them.

D.1.2 Operators

The matrix elements 〈Q′,m′|dα|Q,m〉 of an impurity annihiliation operator connecting

the subspace Q with the subspace Q′ are entered as

1 {
2 "Matrix" : [ 0.0, 0.323423, 0.234534, .....],

3 "Sector Mapping" : [ 1, 12 ]

4 }

where the ”Sector Mapping” key identifies the subspaces Q and Q′ as [Q,Q′]. The

key ”Matrix” specifies the matrix elements in row major order, that is [〈Q′, 1|dα|Q, 1〉 ,

〈Q′, 1|dα|Q, 2〉 , 〈Q′, 1|dα|Q, 3〉, . . . ]. The matrix elements are assumed real here. Putting

all of these matrix blocks in an array defines an operator as

1 [
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2 {
3 "Matrix" : [ 0.0, 0.323423, 0.234534, .....],

4 "Sector Mapping" : [ 1, 12 ]

5 },
6 {
7 "Matrix" : [],

8 "Sector Mapping" : [ 2, 0 ]

9 },
10 .

11 .

12 .

13 {
14 "Matrix" : [ 0.0, 0.52323, -0.134534, .....],

15 "Sector Mapping" : [ 80, 32 ]

16 }
17 ]

If a subspace is mapped to zero as in the second entry above, the ”Matrix” is an empty

array. Again, the order of the matrix blocks in the array does not matter.

The set of all annihilation operators is specified in the ATOMIC file as

1 "Operators": {
2 "A1_1Up": [

3 {
4 "Matrix" : [ 0.0, 0.323423, 0.234534, .....],

5 "Sector Mapping" : [ 1, 12 ]

6 },
7 .

8 .

9 .

10 ],

11 "A1_2Up": [

12 .

13 .

14 .
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15 ],

16 .

17 .

18 .

19 "B2Down": [

20 .

21 .

22 .

23 ]

24 }

where the keys ”A1 1Up”, ”A1 2Up”. . . label the operators with a flavor.

D.2 The HYB file

This file defines the function entries of the hybridization matrix Δα′,α in Matsubara

frequencies. A function is entered as

1 {
2 "First Moment" : 2.0000000000000000,

3 "Second Moment" : 0.0000000000000000,

4 "beta" : 10.000000000000000,

5 "imag" : [ -0.755683438, -0.7322995, .....],

6 "real" : [ 0, 0, ..... ]

7 }

where the fields ”First Moment” and ”Second Moment” contain the high-frequency mo-

ments M1 and M2 of the function Δ(z) = M1/z + M2/z
2. The fields ”real” and ”imag”

contain the real and imaginary part of the function Δ(iω1), Δ(iω2),. . . . Only the fre-

quencies in the upper complex plane are entered, and as the hybridization function in

imaginary time is assumed real here, the lower ones are taken as Δ(−iωn) := Δ(iωn).

The number of Matsubara frequencies is arbitrary. The inverse temperature in the field

”beta” is necessary to rescale the frequencies in case the HYB file is used as seed for a

simulation with different temperature.
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All functions necessary to define the hybridization function matrix Δα′,α in the next

section are listed by keys as

1 {
2 "A1_11": {
3 "First Moment" : 2.0000000000000000,

4 "Second Moment" : 0.0000000000000000,

5 "beta" : 10.000000000000000,

6 "imag" : [ -0.755683438, -0.7322995, .....],

7 "real" : [ 0, 0, ..... ]

8 },
9 "A1_12": {

10 "First Moment" : 2.0000000000000000,

11 "Second Moment" : 0.0000000000000000,

12 "beta" : 10.000000000000000,

13 "imag" : [ -0.252433245, -0.3323456 .....],

14 "real" : [ 0, 0, ..... ]

15 },
16 .

17 .

18 .

19 "B2": {
20 "First Moment" : 2.0000000000000000,

21 "Second Moment" : 0.0000000000000000,

22 "beta" : 10.000000000000000,

23 "imag" : [ -0.1521323, -0.2345 .....],

24 "real" : [ 0, 0, ..... ]

25 }
26 }

in the HYB file.
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D.3 The LINK file

In this section, we relate the functions defined in the HYB file with the flavors defined

in the ATOMIC file and define hence the hybridization matrix Δα′,α. In the same time,

the flavor sets Il and Sm are specified.

In our example of CDMFT for a Hubbard model on an anisotropic triangular lattice

with a 2x2 plaquette, the normal phase hybridization function for spin-σ electrons has

the form ⎛
⎜⎜⎜⎜⎝

ΔσA1,σA1 ΔσA1,σA′
1

0 0

ΔσA′
1,σA1

ΔσA′
1,σA

′
1

0 0

0 0 ΔσB1,σB1 0

0 0 0 ΔσB2,σB2

⎞
⎟⎟⎟⎟⎠ , (D.3)

and the A1 block with spin up for example is specified as

1 {
2 "Irreps": ["A1Up"],

3 "Flavors": [["A1_1Up", "A1_2Up"]],

4 "Matrix": [

5 ["+A1_11+", "+A1_12+"],

6 ["+A1_12+", "+A1_22+"]

7 ]

8 }

The flavors ↑ A1 and ↑ A′
1 belonging to this hybridization block are specified by the

”Flavors” key as ”A1 1Up” and ”A1 2Up” respectively. These flavors must match the

flavors associated with the operators in the ATOMIC file. In the same time, the flavors

are regrouped according the their irreducible representation, and this is where the double

brackets come from. Here only the A1 representation is involved, and all flavors belong

to the set I1. Imagine however that a hybridization block is formed by more than one

irreducible representation I1, I2, . . . as it may happen in a broken symmetry phase. In

this case the ”Flavors” key contains the sets as [[I1], [I2], . . . ], and this reduces to [[I1]]

in the present case. The ”Irreps” key labels the sets I1, I2, . . . , here I1 by ”A1Up”. This

is useful for specifying the updates in section D.4.

The field ”Matrix” now associates the functions defined in the HYB file with the fla-

vors defined in the ATOMIC file, that is Δ↑A1,↑A1 ↔”+A1 11+”, Δ↑A1,↑A′
1
= Δ↑A′

1,↑A1
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↔”+A1 12+” and Δ↑A′
1,↑A′

1
↔”+A1 22+”. The hybridization function is assumed real

here, that is Δα′α(τ) = Δαα′(τ), and the corresponding labels have to match. The plus

signs are discussed below.

The hybridization function in equation (D.3) is specified by putting the blocks into an

array as

1 [

2 {
3 "Irreps": ["A1Up"],

4 "Flavors": [["A1_1Up", "A1_2Up"]],

5 "Matrix": [

6 ["+A1_11+", "+A1_12+"],

7 ["+A1_12+", "+A1_22+"]

8 ]

9 },
10 {
11 "Irreps": ["B1Up"],

12 "Flavors": [["B1Up"]],

13 "Matrix": [

14 ["+B1+"]

15 ]

16 },
17 {
18 "Irreps": ["B2Up"],

19 "Flavors": [["B2Up"]],

20 "Matrix": [

21 ["+B2+"]

22 ]

23 },
24 {
25 "Irreps": ["A1Down"],

26 "Flavors": [["A1_1Down", "A1_2Down"]],

27 "Matrix": [

28 ["+A1_11+", "+A1_12+"],

29 ["+A1_12+", "+A1_22+"]
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30 ]

31 },
32 {
33 "Irreps": ["B1Down"],

34 "Flavors": [["B1Down"]],

35 "Matrix": [

36 ["+B1+"]

37 ]

38 },
39 {
40 "Irreps": ["B2Down"],

41 "Flavors": [["B2Down"]],

42 "Matrix": [

43 ["+B2+"]

44 ]

45 }
46 ]

We now show how to specify a broken symmetry, that is d-wave superconductivity. The

d-wave order parameter transforms spatially as the A2 representation, and involves thus

the σB1 and σB2 representations on the cluster (A2 = B1B2). That is, the 〈V̂σB1V̂σB2〉
and 〈V̂ †

σB1
V̂ †
σB2

〉 hybridizations are finite, in addition to the normal phase ones. To cast

the bath average in a determinant in this case, the d
(†)
↓Bi

and V̂
(†)
↓Bi

operators (where i

is 1 or 2) in equation (D.1) are put in Nambu order, that is d↓Bi
d†↓Bi

→ d†↓Bi
d↓Bi

and

V̂ †
↓Bi

V̂↓Bi
→ V̂↓Bi

V̂ †
↓Bi

. For i = 2, the corresponding hybridization block reads

(
ΔB1(τ) φ(τ)

φ(τ) −ΔB2(−τ),

)
, (D.4)

where ΔBi
(τ) := −〈V̂σBi

(τ)V̂ †
σBi

〉 and φ(τ) := −〈V̂↑B1(τ)V̂↓B2〉 = −〈V̂ †
↓B2

(τ)V̂ †
↑B1

〉 is the

anomalous hybridization. This block is entered in the LINK file as

1 {
2 "Irreps": ["B1Up", "B2Down"],

3 "Flavors": [["B1Up"], ["B2Down*"]],

4 "Matrix": [
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5 ["+B1+", "+phi+"],

6 ["+phi+", "-B2 -"]

7 ]

8 }

where the asterisk in the flavor ”B2Down*” indicates Nambu order. Here we see an

example where a block in the hybridization function is formed by two irreducible rep-

resentations. The minus sign in front and in the back of the ”B2” entry indicates that

the corresponding function Δ(τ) defined in the HYB file gets a minus sign in front and

in the argument, see equation D.4. More precisely ”+B2+”↔ Δ(τ), ”+B2-”↔ Δ(−τ),

”-B2+”↔ −Δ(τ) and ”-B2-”↔ −Δ(−τ).

The Nambu block for i = 1 reads(
ΔB2(τ) φ(−τ)

φ(−τ) −ΔB1(−τ),

)
, (D.5)

where φ(−τ) := −〈V̂↑B1(−τ)V̂↓B2〉 = −〈V̂↑B2(τ)V̂↓B1〉, and is specified as

1 {
2 "Irreps": ["B2Up", "B1Down"],

3 "Flavors": [["B2Up"], ["B1Down*"]],

4 "Matrix": [

5 ["+B2+", "+phi -"],

6 ["+phi -", "-B1 -"]

7 ]

8 }

in the LINK file.

D.4 The UPD file

Presently, three kind of updates are implemented. First the standard updates, where two

operators d and d† are inserted anywhere between 0 and β, and their balancing updates

removing two random d and d† from the trace, referred here by ”InsertErase”. Second

the generally more efficient two operator updates as described in chapter (5) footnote 37.

These are referred to by ”InsertEraseCSQ”. The third are flip updates, named ”Flip”,
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which allow to restore ergodicity for superconductivity as described in chapter 4. The

problematic configurations in the present case of superconductivity are

d↑B1d↓B2d
†
↓B1

d†↑B2
and d↑B2d↓B1d

†
↓B2

d†↑B1
. (D.6)

Both configurations can be transformed into normal phase pairs by flipping the B1 and

B2 representations of either the two creation operators or the two annihilation operators,

for example

d↑B1d↓B2d
†
↓B1

d†↑B2
→ d↑B1d↓B2d

†
↓B2

d†↑B1
. (D.7)

For the superconducting case the UPD file lists the updates to perform as

1 {
2 "InsertErase": {
3 "Weight": 1.,

4 "Moves": [

5 [2., "A1Up"],

6 [1., "B1Up"],

7 [1., "B2Up"],

8 [2., "A1Down"],

9 [1., "B1Down"],

10 [1., "B2Down"]

11 ]

12 },
13 "Flip": {
14 "Weight": 2.,

15 "Moves": [

16 [1., "B1Up", "B2Down", "B2Up", "B1Down"],

17 [1., "B2Down", "B1Up", "B1Down", "B2Up"]

18 ]

19 }
20 }

The ”Weight” keys specify that the ”InsertErase” updates are chosen with probability

1/(1 + 2) and the ”Flip” updates with probability 2/(1 + 2).
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If the ”InsertErase” updates are chosen, the first entry in the array of the ”Moves” key

specifies for example that two operators d and d† in the A1 representation (”A1Up”) are

inserted/removed with probability 2/8. The label ”A1Up” refers to the name given to I1

in the LINK file, and this identifies which operators have to be inserted/removed by the

corresponding ”Flavors” key. For the definition of I1, see below equation (D.2)).

If the ”Flip” updates are chosen, the first array of the ”Moves” key [1., ”B1Up”, ”B2Down”,

”B2Up”, ”B1Down”] specifies to exchange the B1 and B2 representations of two creation

operators as d†↑B1
d†↓B2

↔ d†↑B2
d†↓B1

. This is encoded as follows.

For the ”InsertErase” updates, an Il identified a creation and an annihilation operator

with flavor in Il. For the ”Flip” updates, we associate to a flavor in Il the corresponding

creation operator if the flavor has an asterisk as in ”B2Down*”, and otherwise the corre-

sponding annihilation operator. The ”B1Up” in the first array of the ”Moves” key now

refers to the hermitian conjugate of an operator in I2, and ”B2Down” to an operator in

I6. As I2 contains the flavor ”B1Up” and I6 the flavor ”B2Down*” (see .json entry corre-

sponding to equation D.4), the operators are d†↑B1
and d†↓B2

respectively. In the same way

the next two entries ”B2Up” and ”B1Down” define the operators d†↑B2
and d†↓B1

respec-

tively (see .json entry corresponding to equation D.5), and the ”Moves” array specifies

to exchange ”B1Up”, ”B2Down” with ”B2Up”, ”B1Down”, that is d†↑B1
d†↓B2

↔ d†↑B2
d†↓B1

.

The second array specifies thus to exchange d↓B2d↑B1 ↔ d↓B1d↑B2 operators.

The ”InsertEraseCSQ” updates are specified in the same way as the ”InsertErase”. For

normal phase, simply remove the ”Flip” updates from the UPD file. The ”InsertErase”

and ”InsertEraseCSQ” updates can not be put together in the UPD file.

D.5 The OBS file and the Green function

This .json file allows to define two kind of observables. First static observables on the

impurity, either given by a matrix (for the double occupancy for example) or by a quan-

tum number for each sector (for the total spin along Sz for example if the impurity is

SU(2) invariant). Second susceptibilities, but only involving observables given by quan-

tum numbers.

As alluded in section (2.3.2), observables on the impurity have to be invariant under

the impurity symmetries. In the basis |Q,m〉 of section D.1, a matrix observable O

acquires thus a block-diagonal form, and a block is entered as
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1 {
2 "Matrix": [1.234, 0.9684, ...],

3 "Sector": 2

4 }

where the ”Matrix” key contains the matrix elements of the observable in row major

order as [〈Q, 1|O|Q, 1〉, 〈Q, 1|O|Q, 2〉, 〈Q, 1|O|Q, 3〉, . . . ] and the ”Sector” key specifies

the sector Q. Putting all blocks into an array then defines the observable

1 [

2 {
3 "Matrix": [ -.8567, .23453],

4 "Sector": 1

5 },
6 {
7 "Matrix": [1.234, 0.9684, ...],

8 "Sector": 2

9 },
10 .

11 .

12 .

13 {
14 }
15 ]

Again, the ordering of the block’s within the array is arbitrary, as was the case in the

ATOMIC file as well. An observable corresponding to quantum numbers of the impurity

is given by a value OQ for each sector Q and entered in an array

1 [1, 0, 0, 2,...]

with entries [O1, O2, O3, O4, . . . ].

These observables are specified by the ”Matrix Observable” and ”Quantum Numbers”

keys in the OBS file as

1 {
2 "Matrix Observables" : {
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3 "Double Occupation" : [

4 {
5 "Matrix" : [ 0.0 ],

6 "Sector" : 1

7 },
8 {
9 "Matrix" : [ 0.0 ],

10 "Sector" : 2

11 },
12 .

13 .

14 .

15 {
16 }
17 ],

18 "Some other observable": [

19 {
20 },
21 .

22 .

23 .

24 {
25 }
26 ]

27 },
28 "Quantum Numbers": {
29 "Sz": [ -.5, .0, ...],

30 "Neg1": [.0, 1., ...],

31 "Neg2": [1., .0, ...]

32 },
33 "Susceptibilities": [

34 ["Sz", "Sz"],

35 ["Neg1", "Neg1"],

36 ["Neg1", "Neg2"]
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37 ]

38 }

The key ”Susceptibilites” specifies for which quantum number observables A,B the sus-

ceptibility χA,B has to be calculated. The ”Neg1” and ”Neg2” in this example stand for

conserved electron number in eg orbitals.

We now discuss how to read measurements of observables at the end of a simulation.

The measurements are stored in the params.out.xml and associated files and can be ac-

cessed within C++ using ALPS libraries. We refer to the ALPS documentation how to

do this, and give here only the name and the type of the observable. The name is a

”string” and the type is a real scalar or a real vector observable.

For the matrix and quantum number observables above, both scalar observables, this

is just the name in the .json file, for example ”Double Occupation” or ”Sz”. For a

susceptibility

1 ["A","B"]

the string is ”Chi AB”, and the real vector observable contains the measurements in Mat-

subara frequencies as χA,B(iω1), χA,B(iω2) . . . χA,B(iωN). The cutoff frequency is specified

by

1 EObs=15;

in the parameter file. In this case the maximal Matsubara frequency is the largest with

|iωN | < 15.

The Green function has the same symmetries as the hybridization function, and the

entries can be accessed by the names given to the entries of the hybridization function

in the LINK file. For the normal phase example

1 {
2 "Irreps": ["A1Up"],

3 "Flavors": [["A1_1Up", "A1_2Up"]],

4 "Matrix": [

5 ["+A1_11+", "+A1_12+"],

6 ["+A1_12+", "+A1_22+"]



Chapter D : A generic and fast CT-HYB implementation in C++ 115

7 ]

8 }

in section (D.3), the real part of the Green functions is given by a vector observable

named as ReG↑A1,↑A1(iωn) ↔ ”GreenR A1 11”, ReG↑A1,↑A′
1
(iωn) = ImG↑A′

1,↑A1
(iωn) ↔

”GreenR A1 12” and ReG↑A′
1,↑A′

1
(iωn) ↔ ”GreenR A1 22”. For the real parts exchange

”GreenR ” ↔ ”GreenI ”. Only the frequencies in the upper complex plane are measured,

as the Greens function in imaginary time is assumed real here1, c.f. section (D.2). If an

entry of the hybridization function has a minus in front, the measured Greens function

has a minus in front as well, and in case of a minus in the argument, the Greens function is

measured in the lower complex plane, or equivalently, the complex conjugate is measured.

The cutoff frequency is specified by

1 EGreen=15;

in the parameter file in the same way as for the susceptibility.

In case of Nambu order, the role of the impurity operators in the measured Greens

function is exchanged as well, and the measured entries of the Green function in the case

of superconductivity

1 {
2 "Irreps": ["B1Up", "B2Down"],

3 "Flavors": [["B1Up"], ["B2Down*"]],

4 "Matrix": [

5 ["+B1+", "+phi+"],

6 ["+phi+", "-B2 -"]

7 ]

8 }

are ReG↑B1,↑B1(iωn) ↔ ”GreenR B1”, ReF↑B1,↓B2(iωn) ↔ ”GreenR phi” and ReG↓B2,↓B2(iωn) ↔
”GreenR B2”, as the ”-B2-” entry has a minus in front and in the argument which com-

pensate the Nambu ordering −〈d†↓B2
(τ)d↓B2〉.

1all quantities in the expansion are real
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