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These lecture notes provide an introduction to quantum cluster methods for strongly correlated systems.
Cluster Perturbation Theory (CPT), the Variational Cluster Approximation (VCA) and Cellular Dynamical
Mean Field Theory (CDMFT) are described, as well as the exact diagonalization solver for the cluster.
Potthoff’s self-energy functional formalism is reviewed. Some numerical procedures, in particular regarding
the exact diagonalization method and the frequency-momentum integrals needed in VCA, are discussed in

detail.

I. INTRODUCTION

Classic numerical approaches to lattice models such as
the Hubbard model are usually based on a solution of the
model on a periodic lattice with a small number of sites.
For instance, Exact Diagonalizations (ED) are performed on
periodic systems with no more than ~ 20 sites and Quan-
tum Monte Carlo (QMC) is limited in practice on systems
with < 100 sites. Some extrapolation is then needed to
make statements about the thermodynamic (e.g. infinite-
size) limit. One advantage of such approaches is their rela-
tive simplicity and lack of ambiguity. A disadvantage is that
broken symmetry states need careful analysis to be identi-
fied, as they are fully revealed only in the thermodynamic
limit.

Quantum cluster methods are a set of closely related ap-
proaches that consider instead a finite cluster of sites em-
bedded in the infinite lattice. The embedding is done by
adding to the cluster additional fields or bath degrees of
freedom such as to best represent the effect of the surround-
ing infinite lattice. Variational or self-consistency principles
are used to set the values of these additional parameters.
In these approaches, broken symmetry states can appear
even for the smallest clusters used, somewhat like ordinary
mean-field theory. However, unlike mean field theory, these
approaches are dynamical and retain the full effect of strong
correlations. These methods are usually known by their
acronyms:

1. VCA (Variational Cluster Approximation)® or VCPT (Vari-
ational Cluster Perturbation Theory)

2. CDMFT (Cluster/Cellular Dynamical Mean-Field
Theory)?
3. DCA (Dynamical Cluster Approximation)®*

The first two of these methods (VCA and CDMFT) can
be understood within a more general framework called
the Self-Energy Functional Approach (SFA), proposed by
M. Potthoff.> The last one (DCA) cannot, as usually for-
mulated, but is a momentum-space analog of CDMFT. Both

DCA and CDMFT are cluster generalizations of Dynamical
Mean Field Theory (DMFT).>”

These lecture notes will concentrate on VCA, its precur-
sor CPT, and CDMFT, along with the exact diagonalization
solver. Readers are referred to the excellent review by Maier
et al.® for different aspects of cluster methods, including al-
ternate solvers (that review, however, was written before
the VCA technique was mature).

Each of these cluster methods is in turn dependent on a
solution of the cluster Hamiltonian H’ — which differs from
the lattice Hamiltonian H — by a number of different (ex-
act or approximate) methods. The cluster being often com-
pared to an impurity, we often refer to these as different im-
purity solvers, although the expression cluster solver is more
appropriate. In these notes, we will describe in some detail
a solver based on exact diagonalizations.

We will be concerned with the one-band Hubbard model,
defined on a lattice y whose sites will be labeled by position
vectors (r,7/,...). The destruction operator for an electron
on the Wannier orbital centered at the site # with spin o
will be denoted c,;, and the corresponding number opera-
tor will be n,,. With this notation, the lattice Hamiltonian

reads
H= Z trr’cjacr’a""Uananl_“Z n, ey
r
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where t,, is the hopping matrix, U is the one-site Coulomb
repulsion and u is the chemical potential, which we find
convenient to include in the Hamiltonian. We will assume,
for counting purposes, that the lattice y is periodic, with a
large (i.e., billions) but finite number of sites N. multi-band
Hubbard models are a simple extension of this, and we can
always keep in mind that the index o stands for both spin
and band if we like.
This paper is organized as follows:

1. Section 2 reviews Cluster Perturbation Theory (CPT), the
simplest of all cluster approaches, which is the basis of
VCA and serves as a general introduction to cluster kine-
matics.



FIG. 1. A 10-site cluster and the corresponding super-lattice vec-
tors.

2. Section 3 reviews the exact diagonalization technique for
computing the cluster’s ground state and Green function,
making use of the Lanczos and Band Lanczos methods.

3. Section 4 reviews Potthoff’s self-energy functional ap-
proach, necessary to understand VCA (Section 5) and
CDMFT (Section 6).

4. Roughly a third of this paper consists of appendices that
explain some specific points in more detail. In particular,
Appendix A deals with cluster kinematics and is required
reading before Section 2.

II. CLUSTER PERTURBATION THEORY

The simplest quantum cluster method is Cluster Pertur-
bation Theory (CPT).%!'° CPT can be viewed as a cluster ex-
tension of strong-coupling perturbation theory'!, although
limited to lowest order.'? Its kinematic features are found
in more sophisticated approaches like VCA or CDMFT. The
reader is strongly encouraged to read Appendix A, where
much of the notation about clusters and indices is ex-
plained.

CPT proceeds as follows. First a cluster tiling is chosen
(see, e.g., Fig. 1). Then the lattice Hamiltonian H is writ-
ten as H = H' + V, where H’ is the cluster Hamiltonian,
obtained by severing the hopping terms between different
clusters, and V contains precisely those terms. V is treated
as a perturbation. It can be shown, by the techniques of
strong-coupling perturbation theory'®!?, that the lowest-
order result for the lattice Green function is

Gl (w)=G(w)-V, 2

where V is the matrix of inter-cluster hopping terms and
G'(w) the exact Green function of the cluster. This for-
mula deserves a more thorough description: G, G’ and V
are matrices in the space E one-electron states. This space
is the tensor product y ® B of the lattice y by the space B

of band and spin states. For the remainder of this section
we will ignore B, i.e., band and spin indices. In terms of
compound cluster/cluster-site indices (#, R), G’ is diagonal
in # and identical for all clusters, whereas V is essentially
off-diagonal in #. Because of translation invariance on the
super-lattice, the above formula is simpler in terms of re-
duced wave-vectors, following a partial Fourier transform
F—k:

G l(k,w)= G Y (w)—=V(k). (3)

The matrices appearing in the above formula are now of
order L (the number of sites in the cluster), i.e., they are
matrices in cluster sites R only. G’ is independent of k,
whereas V is frequency independent.

The basic CPT relation (3) may also be expressed in terms
of the self-energy X of the cluster Hamiltonian as

Gk, w) = Gy (k, w)— B(w) , 4)

where Go(fc, w) is the Green function associated with the
non-interacting part of the lattice Hamiltonian. This follows
simply from the relations

Gl=w—-t-3% (5)
Gyl=w—-t -V, 6)

where ' is the restriction to the cluster of the hopping ma-
trix (chemical potential included). It is in the form (4) that
CPT was first proposed®.

A supplemental ingredient to CPT is the periodization
prescription, that provides a fully k-dependent Green func-
tion out of the mixed representation Ggg (k,w). Indeed,
the cluster decomposition breaks the original lattice trans-
lation symmetry of the model. The Green function (3) is
not fully translation invariant. This means that it is not
diagonal when expressed in terms of wave-vectors: G —
G(k,k’). Due to the residual super-lattice translation in-
variance, however, k' and k must map to the same wave-
vector of the super-lattice Brillouin zone (or reduced Bril-
louin zone) and differ by an element of the reciprocal super-
lattice. The periodization procedure proposed in Ref. 10
applies to the Green function itself:

1 g ~
Gper. (k, ) = T Z e R RERIG o (k) . 7
RR

Moreover, since the reduced zone k is taken from is im-
material, on may replace k by k in the above formula (i.e.
replacing k by k+K yields the same result). This periodiza-
tion formula may be heuristically justified as follows. In the
(K, k) basis, the matrix G has the following form:

= 1 : I -
GKK'(k7 O)) = - Z eil(K.RiK R )GRR’(kJ O)) . (8)
L R,R

This form can be further converted to the full wave-vector



basis (k = K+k) by use of the unitary matrix A of Eq (A24):
Gk + K, k+K') = (A(K)GA'(K)) ..

1 e .7 7 7 7
- o i(k+K—K\)Roi(k+K'-K)R' @z
2 Z K1K1
L R,R' Ky K
1 e’ 7. / ’ ~
_ = Z e i(k+K) R oi(k+K') R Grr(k, w) . 9)
R, R

The periodization prescription (7) amounts to picking the
diagonal piece of the Green function (k = k’) and discard-
ing the rest. This makes sense in as much as the density of
states N(w) is the trace of the imaginary part of the Green
function:

N(w) = _IEV ImtrG(w) = —% ImZ Gp(w)
2
=5 Imzk: G(k,w), (10)

and the spectral function A(k, w), as a partial trace, involves
only the diagonal part. Indeed, it is a simple matter to show
from the anticommutation relations that the frequency in-
tegral of the Green function is the unit matrix:

—ZImJ d—w Glw)=1. an
27

This being representation independent, it follows that the
frequency integral of the imaginary part of the off-diagonal
components of the Green function vanishes.

Another possible prescription for periodization is to ap-
ply the above procedure to the self-energy ¥ instead. This
is appealing since X is an irreducible quantity, as opposed
to G. This amounts to throwing out the off-diagonal com-
ponents of X before applying Dyson’s equation to get G, as
opposed to discarding the off-diagonal part at the last step,
once the matrix inversion towards G has taken place. As
Fig. 2 shows, periodizing the Green function (Eq. (7)) re-
produces the expected feature of the spectral function of the
one-dimensional Hubbard model. In particular, the Mott
gap that opens at arbitrary small U (as known from the
exact solution), whereas periodizing the self-energy leaves
spectral weight within the Mott gap for arbitrary large value
of U. Therefore we will always use Green function peri-
odization.

CPT has the following characteristics:

1. Although it is derived using strong-coupling perturbation
theory, it is exact in the U — 0 limit, as the self-energy
disappear in that case.

2. It is also exact in the strong-coupling limit t,./U — O.

3. It provides an approximate lattice Green function for ar-
bitrary wave-vectors. Hence its usefulness in compar-
ing with ARPES data. Even though CPT does not have
the self-consistency present in DMFT type approaches,
at fixed computing resources it allows for the best mo-
mentum resolution. This is particularly important for the

FIG. 2. Top: CPT spectral function of the one-dimensional, half-
filled Hubbard model with U = 4, t = 1, with Green function
periodization (L = 16). Bottom : the same, with Self-energy pe-
riodization instead; notice the important spectral weight in the
middle of the Mott gap.

ARPES pseudogap in electron-doped cuprates that has
quite a detailed momentum space structure, and for d-
wave superconducting correlations where the zero tem-
perature pair correlation length may extend well beyond
near-neighbor sites.

4. Although formulated as a lowest-order result of strong-
coupling perturbation theory, it is not controlled by in-
cluding higher-order terms in that perturbation expan-
sion — this would be extremely difficult — but rather by
increasing the cluster size.

5. It cannot describe broken-symmetry states. This is ac-
complished by VCA and CDMFT, which can both be
viewed as extensions or refinements of CPT.

III. EXACT DIAGONALIZATIONS

Before going on to describe more sophisticated quantum
cluster approaches, let us describe in some detail a partic-
ular cluster solver, i.e., a particular method used to calcu-
late the ground state and Green function of the cluster: the
exact diagonalization method, based on the Lanczos algo-
rithm. The quantum cluster methods described here are not
tied to a specific solver for the cluster. For instance, Quan-
tum Monte Carlo or any other approximate method of solu-
tion for the cluster Green function could be used. The exact



diagonalization (ED) method has the advantage of high nu-
merical accuracy at zero temperature, and can be to some
extent controlled by the size of the cluster used.

The basic idea behind exact diagonalization is one of
brute force, but its practical implementation may require a
lot of care depending on the desired level of optimization.
Basically, an exact representation of the Hamiltonian action
on arbitrary state vectors must be coded - this may or may
not involve an explicit construction of the Hamiltonian ma-
trix. Then the ground state is found in an quasi-exact way
by an iterative method such as the Lanczos algorithm. The
Green function is thereafter calculated by similar means to
be described below. The main difficulty with execution is
the large memory needed by the method, which grows ex-
ponentially with the number of degrees of freedom. As for
coding, the main difficulty is to optimize the method, in
particular by taking point group symmetries into account.

A. Coding of the basis states

The first step in the exact diagonalization procedure is to
define a coding scheme for the quantum basis states. Let
the different orbitals (or one-electron states) of the cluster
be labeled by a Greek index u, which is in fact a compound
index of cluster position R and spin/band o. A basis state
may be specified by the occupation number n,, (= 0 or 1)
of electrons in the orbital labeled u and has the following
expression in terms of creation operators:

(e )t (ef i (e] e o (ef )j0)  (12)

where the order in which the creation operators are applied
is a matter of convention, but important. If the number of
orbitals is smaller than or equal to 32, the string of n,’s
forms the binary representation of a 32-bit unsigned integer
b, which can be split into spin up and spin down parts:

There are 22! such states, but not all are relevant, since
the Hubbard Hamiltonian is block-diagonal : The number
of electrons of a given spin (N; and N|) is conserved and
commutes with the Hamiltonian H. Therefore the exact di-
agonalization is to be performed in a sector (i.e. a subspace)
of the total Hilbert space with fixed values of N; and N;.
This space has the tensor product structure

V="Vy ®Vy (14
and has dimension d = d(N;)d(N,), where

L!
W)= =y -

is the dimension of each factor, i.e., the number of ways to
distribute N, electrons among L sites.

Note that the ground state |[Q2) of the Hamiltonian gen-
erally belongs to the sector Ny = N|. For a half-filled,

4

zero spin system (N; = N = L/2), this translates into
d = (L!/(L/2)'?)?, which behaves like 4% /L for large L:
The size of the eigenproblem grows exponentially with sys-
tem size. By contrast, the non-interacting problem can be
solved only by concentrating on one-electron states. For this
reason, exact diagonalization of the Hubbard Hamiltonian
is restricted to systems of the order of 16 sites or less.

In practice, a generic state vector is represented by an d-
component array of double precision numbers. In order to
apply or construct the Hamiltonian acting on such vectors,
we need a way to translate the label of a basis state (an
integer i from 0 to d — 1), into the binary representation
(12). The way to do this depends on the level of complexity
of the Hilbert space structure. In the simple case (14), one
needs, for each spin, to build a two-way look-up table that
tabulates the correspondence between consecutive integer
labels and the binary representation of the spin up (resp.
spin down) part of the basis state. Thus, given a binary
representation (by, b)) of a basis state |b) = |b;)|b;), one
immediately finds integer labels I,(b;) and I;(b,) and the
label of the full basis state may be taken as

On the other hand, given a label i, the corresponding labels
of each spin part are

where integer division (i.e. without fractional remainder)
is used in the above expression. The binary representation
b is recovered by inverse tables B as

The next step is to construct the Hamiltonian matrix.
The particular structure of the Hubbard model Hamiltonian
brings a considerable simplification in the simple case stud-
ied here. Indeed, the Hamiltonian has the form

H=K;®1+10K + Vi (19)

where K; only acts on up electrons and K| on down elec-
trons, and where the Coulomb repulsion term Vi, is di-
agonal in the occupation number basis. Thus, storing the
Hamiltonian in memory is not a problem : the diagonal V.,
is stored (an array of size d), and the kinetic energy K, (a
matrix having a small fraction of d(zI elements) is stored in
sparse form. Constructing this matrix, formally expressed
as

K= tuclcy, (20)
a,b

needs some care with the signs. Basically, two basis states
|b,) and |b] ) are connected with this matrix if their binary
representations differ at two positions a and b. The matrix
element is then (—1)«t,,, where M, is the number of
occupied sites between a and b, i.e., assuming a < b,

b—1

Mp= Y. n 1)

c=a+1



For instance, the two states (10010110) and (10011100)
with L = 8 are connected with the matrix element —t,q,
where the sites are numbered from 0 to L — 1.

Calculating the Hubbard interaction is straightforward: a
bit-wise AND is applied to the up and down parts of a binary
state (b; & b in C or C++) and the number of set bits of the
result is the number of doubly occupied sites in that basis
state.

B. The Lanczos algorithm for the ground state

Next, one must apply the exact diagonalization method
per se, using the Lanczos algorithm. Generally, the Lanczos
method® is used when one needs the extreme eigenvalues
of a matrix too large to be fully diagonalized (e.g. with
the Householder algorithm). The method is iterative and
involves only multiply-add’s from the matrix. This means
in particular that the matrix does not necessarily have to
be constructed explicitly, since only its action on a vector is
needed. In some extreme cases where it is practical to do
so, the matrix elements can be calculated ‘on the fly’, and
this allows to save the memory associated with storing the
matrix itself.

The basic idea behind the Lanczos method is to build a
projection 52 of the full Hamiltonian matrix H onto the so-
called Krylov subspace. Starting with a (random) state |¢,),
the Krylov subspace is spanned by the iterated application
of H:

%’=Span{|¢>0),H|¢0),H2|¢0),---,HM|¢O)} (22)

the generating vectors above are not mutually orthogonal,
but a sequence of mutually orthogonal vectors can be built
from the following recursion relation

|¢n+1> :qubn)_anlqsn)_bilqbn—l) (23)
where

(PnlH|y)

L (Guldn)
i P Rl Py FY

and we set the initial conditions b, = 0, |¢_;) = 0. At
any given step, only three state vectors are kept in mem-
ory (¢n+1, ¢, and ¢,_;). In the basis of normalized states

n) = |¢,)/ v {b,l¢,), the projected Hamiltonian has the

tridiagonal form

bo=0 (24)

ao bl O 0 ct O
bl al b2 O et O

H=|0 by ay by --- 0 (25)

0 0 0 0 - ay
Such a matrix is readily diagonalized by fast methods ded-
icated to tridiagonal matrices, and a convergence criterion

must be set for the lowest eigenvalue E;, at which itera-
tions stop. For instance, one may stop the procedure when

the lowest eigenvalue E, changes by no more that one part
in 10'2. This may require between a number M of iterations
between a few tens and ~ 200, depending on system size.

The ground state energy E, and the ground state |Q2)
are very well approximated by the lowest eigenvalue and
the corresponding eigenvector of that matrix, which are
obtained by standard methods. This provides us with the
ground state |[Q2) in the reduced basis {|¢,,)}. But we need
the ground state in the original basis, and this requires re-
tracing the Lanczos iterations a second time — for the |¢,,)
are not stored in memory — and constructing the ground
state progressively at each iteration from the known coeffi-
cients (Q|¢,,).

The Lanczos procedure is simple and efficient. Conver-
gence is fast if the lowest eigenvalue E, is well separated
from the next one (E;). It slows down if E; — E; is small.
If the ground state is degenerate (E; = E,), the procedure
will converge to a vector of the ground state subspace, a
different one each time the initial state |¢,) is changed.

Note that the sequence of Lanczos vectors |¢,,) is in prin-
ciple orthogonal, as this is guaranteed by the three-way re-
cursion relation (23). However, numerical error will in-
troduce ‘orthogonality leaks’, and after a few tens of iter-
ations the Lanczos basis will become over-complete in the
Krylov subspace. This will translate in multiple copies of
the ground state eigenvalue in the tridiagonal matrix (25),
which should not be taken as a true degeneracy. However,
as long as one is only interested in the ground state and not
in the multiplicity of the lowest eigenvalues, this is not a
problem.

C. The Lanczos algorithm for the Green function

Once the ground state is known, it remains to calculate
the cluster Green function. The zero-temperature Green
function G,,,(w) has the following expression, as a function
of the complex-valued frequency w:

G;/w(“)) = Gl’”’e(a)) + G"”’h(w) (26)

G, (@)= <Q|Cum0'vlﬂ> 27)
— (Ot

G, p(0) = <Q|Cvmculﬂ) (28)

In the basic Hubbard model, spin is conserved and we need
only to consider the creation and annihilation of up-spin
electrons.

We will first describe a Lanczos algorithm for calculating
the Green function, that provides a continued-fraction rep-
resentation of its frequency dependence. In the next sub-
section, we will instead present an alternate method based
on the Band Lanczos algorithm, that provides a Lehmann
representation of the Green function and that is both faster
and more memory intensive.

Consider first the function G;u’e(a)). One needs to know

the action of (w —H +E,)™" on the state |¢,,) = c[|£2), and



then to calculate

1

G = _
e <¢H|C()_H+EO

I6,) 29)

As with any generic function of H, this one can be expanded
in powers of H:

L —1+1H+1H2+ (30)
z2—H 2z 22 23

and the action of this operator can be evaluated exactly at
order H™ in a Krylov subspace (22). Thus we again resort
to the Lanczos algorithm: A Lanczos sequence is calculated
from the initial, normalized state |¢o) = [¢,)/b, Where
bg = (¢,l¢,). This sequence generates a tridiagonal rep-
resentation of H, albeit in a different Hilbert space sector :
that with N; + 1 up-spin electrons and N; down-spin elec-
trons. Once the preset maximum number of Lanczos steps,
or a near zero value of b,, has been reached, the tridiago-
nal representation (25) may then be used to calculate (29).
This amounts to the matrix element b3[(w —H + Ey) ™ oo
(the first element of the inverse of a tridiagonal matrix),
which has a simple continued fraction form :'*

G (0) = (31)

w—ay—

Thus, evaluating the Green function, once the arrays {a,}
and {b, } have been found, reduces to the calculation of a
truncated continued fraction, which can be done recursively
in M steps, starting from the bottom floor of the fraction.

Consider next the case u # v. The continued fraction
representation applies only to the case where the same state
|¢) appears on the two sides of (29). If u # v, this is no
longer the case, but we may use the following trick : we
define the combination

uv,e

1
Gt (w)= <Q|(C“+CV)0)T+EO(C”+C")I|Q> (32)
Using the symmetry G,,, .(w) = G,,, .(w), this leads to

1
Gyv,e(w) = E(G;v,e(w)_Guy,e(w)_va,e(w)) (33)

where G;v’e can be calculated in the same way as G, ., i.e.,
with a simple continued fraction. We proceed likewise for
G;v)h(co).

Thus, the cluster Green function is encoded in L(L + 1)
continued fractions, whose coefficients are stored in mem-
ory, so that G’(w) can be computed on demand for any com-
plex frequency w.

Note that a minimal way to take advantage of cluster
symmetries is to restrict the calculation of the Green func-
tion to an irreducible set of pairs (u, v) of orbitals that can

generate all other pairs by symmetry operations of the clus-
ter. Thus, if a symmetry operation g takes the orbital u into
the orbital g(u), we have

G (©0) = Gy (@) (34)

Taking this into account is an easy and important time saver,
but not as efficient as using a basis of symmetry eigenstates,
as described later on in this section.

D. The Band Lanczos algorithm for the Green function

An alternate way of calculating the cluster Green func-
tion is to apply the band Lanczos procedure'®. This is a gen-
eralization of the Lanczos procedure in which the Krylov
subspace is spanned not by one, but by many states. Let
us assume that up and down spins are decoupled, so that
the Green function is L x L block diagonal. The L states
lpu) = cZIQ) are first constructed, and then one builds the

projection ¢ of H’' on the Krylov subspace spanned by
{|¢1>’ et |¢L>7H/|¢1>’ s ’H/|¢L>: et
HYM 1), EH19,)}

A Lanczos basis {|n)} is constructed by successive applica-
tion of H' and orthonormalization with respect to the pre-
vious 2L basis vectors. In principle, each new basis vector
|n) is already automatically orthogonal to basis vectors |1)
through |n — 2L — 1), although ‘orthogonality leaks’ arise
eventually and may be problematic. A practical rule of
thumb to avoid these problems is to control the number M
of iterations by the convergence of the lowest eigenvalue of
# (e.g. to one part in 10'°). Independently of this, one
must be careful about potential redundant basis vectors in
the Krylov subspace, which must be properly ‘deflated’.'®
The number of states R in the Krylov subspace at conver-
gence is typically between 100 and 300, depending on sys-
tem size. The R xR matrix 5¢, which has a tridiagonal struc-
ture in the ordinary Lanczos method, now has a band struc-
ture made of 2L diagonals around the central diagonal. It is
then a simple matter to obtain a Lehmann representation of
the Green function in the Krylov subspace (see Appendix B)
by calculating the projections Q,,, of |¢,,) on the eigenstates
of ## (the inner products of the |¢,)’s with the Lanczos
vectors are calculated as the latter are constructed). The
Green function can then be expressed in a Lehmann rep-
resentation (B4). The two contributions GI’”’E and G;v’h to
the Green function are computed separately, and the corre-
sponding matrices Q and A are simply concatenated to form
the complete Q- and A-matrices, which are then stored and
allow again for a quick calculation of the Green function as
a function of the complex frequency w. The matrix 2L x R
matrix Q has the property that

QQ" =19 (36)

This holds even if the Lehmann representation is obtained
from a subspace and not the full space, and is simply a con-
sequence of the anticommutation relations {c,,c}} = 6,,.

(35)



The band Lanczos method requires more memory than
the usual Lanczos method, since 2L + 1 vectors must simul-
taneously be kept in memory, compared to 3 for the simple
Lanczos method. On the other hand, it is faster since all
pairs (u, v) are covered in a single procedure, compared to
L(L+1)/2. Thus, we gain a factor L? in speed at the cost of
a factor L in memory. Another advantage is that it provides
a Lehmann representation of the Green function.

E. Cluster symmetries

It is possible to optimize the exact diagonalization pro-
cedure by taking advantage of the symmetries of the clus-
ter Hamiltonian, in particular coming from cluster geome-
try. If the Hamiltonian is invariant under a discrete group
& of symmetry operations and |&| denotes the number of
such elements (the order of the group), the dimension of
the largest Hilbert space needed can be reduced by a fac-
tor of almost |&|, and the number of state vectors needed
in the band Lanczos method reduced by the same factor.
The corresponding speed gain is appreciable. In the case
of large clusters (e.g. 16 sites), taking advantage of sym-
metries may make the difference between doing or not do-
ing the problem. The price to pay is a higher complexity
in coding the basis states, which almost forces one to store
the Hamiltonian matrix in memory, if it were not already,
since calculating matrix elements ‘on the fly’ becomes more
time consuming. Note that we are using open boundary
conditions (except in the case of the DCA, not discussed in
these notes), and therefore there is no translation symme-
try within the cluster; thus we are concerned with points
groups, not space groups.

Let us start with a simple example: a cluster invariant
with respect to a single inversion, or a single rotation by 7.
One may think of a one-dimensional cluster, for instance,
with a left-right inversion. The corresponding symmetry
group is C,, with two elements: the identity e and the in-
version t. The group C, contains two irreducible represen-
tations, noted A and B, corresponding respectively to states
that are even and odd with respect to ¢. Because the Hamil-
tonian is invariant under inversion: H = 1~'Hu, eigenvec-
tors of H will be either even or odd, i.e. belong either to the
A or to the B representation. Likewise, the Hamiltonian will
have no matrix elements between states belonging to differ-
ent representations (the reader is invited to read Appendix
C for a review of the necessary group-theoretical concepts).

In order to take advantage of this fact, one needs to con-
struct a basis containing only states of a given represen-
tation. The occupation number basis states |b) (or binary
states, as we will call them) introduced above are no longer
adequate. In the case of the simple group C,, one should
rather consider the even and odd combinations |b) + ¢|b)
(and some of these combinations may vanish). Yet we still
need a scheme to label the different basis states and have
a quick access to their occupation number representation,
which allows us to compute matrix elements. Let us briefly
describe how this can be done (a more detailed discussion

can be found, e.g., in Ref. 16). Under the action of the
group &, each binary state generates an ‘orbit’ of binary
states, whose length is the order |&| of the group, or a divi-
sor thereof. To such an orbit corresponds at most d,, states
in the irreducible representation labeled a, given by the cor-
responding projection operator:

d
) = ﬁZ%é‘“*glb) 37)
g

where d, is the dimension of the irreducible representa-
tion a. We will restrict the discussion to the simplest case,
where all irreducible representations considered are one-
dimensional (d, = 1; the case d, > 1 turns out to be quite
a bit more complex). Then the state |v)) is either zero or
unique for a given orbit. We can then select a representa-
tive binary state for each orbit (e.g. the one associated with
the smallest binary representation) and use it as a label for
the state |)). We still need an index function B(i) which
provides the representative binary state for each consecu-
tive label i. The reverse correspondence i = I(b) is trickier,
since symmetrized states are no longer factorized as prod-
ucts of up and down spin parts. It is better then to search
the array B for the value of the index i that provides a given
binary state b. One can still be aided by a partial reverse
index I;(b;) that provides the first occurrence in the list B
of a state with b; as the spin up part, assuming that states
are sorted according to b;, then according to b;.

Once the basis has been constructed, one needs to con-
struct a matrix representation of the Hamiltonian in that
representation. Given two states [1;) and |vy,), repre-
sented by the binary states |b;) and |b,), it is a simple matter
to show that the matrix element is

d
(WalH ) = 5 D2 D (D)eballby)  (38)
&

where the phase ¢,(b) is defined by the relation
glb) = ¢4 (b)Igh) . (39)

In the above relation, |gb) is the binary state obtained by
applying the symmetry operation g to the occupation num-
bers forming b, whereas the phase ¢, (b) is the product of
signs collected from all the permutations of creation opera-
tors needed to go from b to gb. Formula (38) is used as fol-
lows to construct the Hamiltonian matrix: First, the Hamil-
tonian can be written as H = ), H,, where H, is a hopping
term between specific sites, or a diagonal term like the inter-
action. One then loops over all b;’s. For each b,, and each
term H,, one construct the single binary state H,|b;). One
then finds the representative b, of that binary state, by ap-
plying on it all possible symmetry operations until g is found
such that |gb,) = H,|b;). During this operation, the phase
¢ g(b) must also be collected. Then the matrix element (38)
is added to the list of stored matrix elements. Since each
term H, individually is not invariant under the group, there
will be more matrix elements generated than there should
be, i.e., there will be cancellations between different ma-
trix elements associated with the same pair (b;, b,) and



TABLE 1. Number of matrix elements of a given value in the
nearest-neighbor hopping operator on the half-filled 3 x 4 = 12
site cluster, for each irreducible representation of C,,. The dimen-
sion of each subspace is indicated on the second row.

A, A, B, B,
dim.| 213,840 213,248 213,440 213,248
value
-2 96 736 704 0
-2 12,640 6,208 7,584 5,072
—1| 2,983,264 2,936,144 2,884,832 2,911,920
1| 952,000 997,168 1,050,432 1,021,392
V2 5,088 2,304 3,232 2,992
2 32 0 0 0

produced by the different H,’s. For this reason, it is useful
to first store all matrix elements associated with a given b,
in an intermediate location in order for the cancellations to
take effect, and then to store the cleaned up ‘column’ la-
beled by b, to its definitive storage location. Needless to
say, one should only store the row and column indices of
each element of a given value.

Table I gives the values and number of matrix elements
found for the nearest-neighbor hopping terms on the half-
filled 12-site (3 x 4) cluster, in each of the four irreducible
representations of the group C,,.

E Green functions using cluster symmetries

Most of the time, the ground state lies in the trivial (sym-
metric) representation. However, taking advantage of sym-
metries in the calculation of the Green function requires all
the irreducible representations to be included in the calcu-
lation. Consider for instance the simple example of a C,
symmetry, with a ground state |Q2) in the A (even) represen-
tation. Constructing the Green function involves applying
on |Q) the destruction operator c, (or the creation opera-
tor CD associated to site a. The excited state thus produced
does not belong to a well-defined representation. Instead,
on should destroy (or create) and electron in an odd or even
state, by using the linear combinations c, * c,,, where ta
is the site obtained by applying the symmetry operation to
a. Thus, in calculating the Green function (26), one should
express each creation/destruction operator in terms of sym-
metrized combinations, e.g.,

1 1
Ca = E(Ca + CLa) + E(Ca - CLa) (40)

More generally, one would use symmetrized combinations
of operators

@ — $7 @
@ =>"M, 41)
a

such that ¢(® transforms under representation a, and p
labels the different possibilities. For instance, for a linear

cluster of length 4 and an inversion symmetry that maps
the sites (1234) into (4321), these operators are

@ _ (B) _
(o =

—C1+C4 C Cl_C4

. (42)
C(A)_C +c C(B)_C —C
2 T Y2 3 2 — L2 3

Then, for each representation, one may use the Band Lanc-
zos procedure and obtain a Lehmann representation QE)"‘r) for

the associated Green function Gl()"g(w). If the ground state is

in representation a and the operators cg") of representation
f are used, the Hilbert space sector to work with will be the
tensor product representation a ® 3, which poses no prob-
lem at all when all irreps are one-dimensional, but would
bring additional complexity if the ground state were in a
multidimensional representation. Finally, one may bring to-
gether the different pieces, by building a L x L matrix M,,,
that is the vertical concatenation of the various rectangular
matrices Mé‘;), and returning to the usual Q-matrix repre-
sentation

Qur = (Mil)aprr (43)

Using cluster symmetries for the Green function saves a fac-
tor |&| in memory because of the reduction of the Hilbert
space dimension, and an additional factor of |&| since the
number of input vectors in the band Lanczos procedure is
also divided by |®|. Typically then, most of the memory will
be used to store the Hamiltonian matrix.

G. Parallelization

For larger clusters (e.g. 16 sites), the computer mem-
ory required to carry out the exact diagonalization is too
large to fit on a typical computer. In those cases the only
practical choice is to parallelize the exact diagonalization
procedure. Although this is a technical issue that has more
to do with programming than with the algorithm, a brief
explanation is in order. Parallelization consists in dividing
the task and data between many processes (run on differ-
ent cpus), with communication between processes taking
place on a frequent basis. The Message Passing Interface
(MPI) Library is the most common way to accomplish this
on distributed-memory machines. Parallelization is often
a difficult task, and is likely not to scale well (i.e., the in-
verse computing time grows more slowly than the number
of processes) when inter-process communications occur too
frequently. However, parallelization makes the difference
between doing or not doing a large problem.

Let us now briefly describe a possible way to parallelized
an exact diagonalization program, as used by us. Let A be
the number of processes across which the problem is paral-
lelized. We split each Hilbert space vector into 4" (nearly)
equal segments, and the Hamiltonian matrix into .42 blocks
(labeled H;;, with I,J = 1,..., 4. A single matrix-vector
multiplication |y) = H|x) then proceeds, for each process,
by A successive operations |y); = Hy,|x),, J labeling the
different processes and I the successive operations. After



FIG. 3. How to split a matrix-vector multiplication |y) = H|x)
across two processes. ‘Blue’ data reside on one process, and ‘red’
on the other. For each of the two segments of |y), each process
performs a block matrix multiplication, and the results of the two
processes must be transferred to each other to be added.

each operation the resulting vectors |y), must be sent to
process I to be summed in a single segment. This is il-
lustrated on Fig. 3 for A = 2. Thus, each multiply-add
operator involves 4 ‘broadcast’ or ‘reduce’ operations, in
MPI jargon. The construction of the Hamiltonian is also
parallelized, as each process takes care of its own group of
columns. This constitutes what is called fine-grained paral-
lelization: communications are very frequent (many calls
per matrix-vector multiply add). Consequently, scaling is
poor and in practice the number of processes should be kept
to a minimum, just enough to fit the program in memory.

As a whole, computational scientists will feel an ever in-
creasing pressure to use parallel computing, as this will be-
come the only way not only to do larger problem, but to
substantially speed up all problems, because of the slowing
down of Moore’s law and of the ubiquity of cpus with an
increasing number of cores.

IV. THE SELF-ENERGY FUNCTIONAL APPROACH

That CPT is incapable of describing broken symmetries
is its major drawback. Treating spontaneously broken sym-
metries requires some sort of self-consistent procedure, or a
variational principle. Ordinary mean-field theory does pre-
cisely that, but is limited by its discarding of fluctuations
and its uncontrolled character.

A heuristic way of treating broken symmetry states within
CPT would be to add to the cluster Hamiltonian H' a Weiss
field that pushes the system towards some predetermined
form of order. For instance, the following term, added to
the Hamiltonian, would induce Néel antiferromagnetism:

Hi =M0Oy =M Y e®R(ng —ng)) (44)
R

where Q = (m,7) is the antiferromagnetic wave-vector
What is needed is a procedure to set the value of the Weiss
parameter M. Adopting a mean-field-like procedure (i.e.
factorizing the interaction in the correct channel and ap-
plying a self-consistency condition) would bring us exactly
back to ordinary mean-field theory: the interaction having
disappeared, the cluster decomposition would be suddenly
useless and CPT would provide the same result regardless
of cluster size.

O

®[G] = |

O+ +

FIG. 4. Diagrammatic definition of the Luttinger-Ward functional,
as a sum over two-particle irreducible graphs.
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The solution to that conundrum is most elegantly pro-
vided by the self-energy functional approach (SFA), pro-
posed by Potthoff.! This approach also has the merit of pre-
senting various cluster schemes from a unified point of view.
It can also be seen as a special case of the more general in-
version method'’, recently reviewed in Ref. 18 in the con-
text of Density Functional Theory and DMFT.

To start with, let us introduce a functional 2,[ G] of the
Green function:

Q[G]1=2[G]— Tr((G,} — G 1)G) + TrIn(—G). (45)

This means that, given any Green function G;;(w) one can
cook up - yet with the usual analytic properties of Green
functions as a function of frequency - this expression yields
a number. In the above expression, products and powers
of Green functions — e.g. in series expansions like that of
the logarithm — are to be understood in a functional matrix
sense. This means that position i and time T, or equiva-
lently, position and frequency, are merged into a single in-
dex. Accordingly, the symbol Tr denotes a functional trace,
i.e., it involves not only a sum over sites indices, but also
over frequencies. The latter can be taken as a sum over
Matsubara frequencies at finite temperature, or as an inte-
gral over the imaginary frequency axis at zero temperature.

The Luttinger Ward functional ®[ G] entering this expres-
sion is usually defined as the sum of two-particle irreducible
(2P]) diagrams : diagrams that cannot by split into dis-
joint parts by cutting two fermion lines (Fig. 4). These are
sometimes called skeleton diagrams, although ‘two-particle
irreducible’ is more accurate. A diagram-free definition of
®[ G] is also given in Ref. 19. For our purposes, what is im-
portant is that (1) The functional derivative of ®[ G] is the
self-energy

69[G]
6G

(as defined diagrammatically) and (2) it is a universal func-
tional of G in the following sense: whatever the form of
the one-body Hamiltonian, it depends only on the interac-
tion and, functionally, it has the same dependence on G.
This is manifest from its diagrammatic definition, since only
the interaction (dotted lines) and the Green function given
as argument, enter the expression. The dependence of the
functional Q,[ G] on the one-body part of the Hamiltonian
is denoted by the subscript ¢ and it comes only through
thl = w — t appearing on the right-hand side of Eq. (45).
The functional Q,[ G] has the important property that it
is stationary when G takes the value prescribed by Dyson’s

=% (46)



equation. Indeed, given the last two equations, the Euler
equation takes the form

6Q,[G]
5§G

This is a dynamic variational principle since it involves the
frequency appearing in the Green function, in other words
excited states are involved in the variation. At this station-
ary point, and only there, Q,[G] is equal to the physical
(thermodynamic) grand potential. Contrary to Ritz’s varia-
tional principle, this last equation does not tell us whether
Q,[G] is a minimum, a maximum, or a saddle point there.

There are various ways to use the stationarity property
that we described above. The most common one is to ap-
proximate ®[G] by a finite set of diagrams. This is how
one obtains the Hartree-Fock, the FLEX approximation®° or
other so-called thermodynamically consistent theories. This
is what Potthoff calls a type II approximation strategy.>' A
type I approximation simplifies the Euler equation itself. In
a type III approximation, one uses the exact form of ®[ G]
but only on a limited domain of trial Green functions.

Following Potthoff, we adopt the type III approximation
on a functional of the self-energy instead of on a func-
tional of the Green function. Suppose we can locally invert
Eq. (46) for the self-energy to write G as a functional of X.
We can use this result to write,

-G,/ +G ' =0. 47)

Q,[2]=F[2]— TrIn(-G,;} + ). (48)
where we defined

F[X]=9[G]— Tr(ZG). (49)

and where it is implicit that G = G[X] is now a functional
of . F[X], along with the expression (46) for the deriva-
tive of the Luttinger-Ward functional, defines the Legendre
transform of the Luttinger-Ward functional. It is easy to ver-
ify that

SF[2] 68[G]5G[3] _Esc[z]
§% 866G &% 5%

hence, Q,[X] is stationary with respect to ¥ when Dyson’s
equation is satisfied

60,[2]
1>

-G=-G (50)

=—G+(G,}—-x) ' =0. (51)

To perform a type III approximation on F[X], we take
advantage that it is universal, i.e., that it depends only on
the interaction part of the Hamiltonian and not on the one-
body part. We then consider another Hamiltonian, denoted
H’ and called the reference system, that describes the same
degrees of freedom as H and shares the same interaction
(i.e. two-body) part. Thus H and H’ differ only by one-body
terms. We have in mind for H’ the cluster Hamiltonian, or
rather the sum of all (mutually decoupled) cluster Hamilto-
nians. At the physical self-energy X of the cluster, Eq. (48)
allows us to write

Q. [2]=Q =F[2]- Trin(-G"), (52)
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where Q' is the cluster Hamiltonian’s grand potential and
G’ its physical Green function, obtained through the exact
solution. From this we can extract F[X] and it follows that

Q[2]=Q'+ Trin(—G') — Trin(—G,; + %)

(53)
=0+ Trin(—G’) — Trln(—G)

where G now stands for the CPT Green function (2). This
expression can be further simplified as

Q[2]1=Q — Trin(1-VG’) (54)

Let us finally make the trace more explicit: It is a sum over
frequencies and a sum over lattice sites (and spin and band
indices), which can be expressed instead as a sum over re-
duced wave-vectors (as the CPT Green function is diagonal
in that index), plus a “small” trace (denoted tr) on residual
indices (cluster site, spin, and band):

Q,[%] = —TZZ trin[1 - V(k)G'(w)]
=q —TZZlndet 1-V()G' ()] (55
o &

where the matrix identity trinA = IndetA was used in the
second equation.

The type III approximation comes from the fact that the
self-energy X is restricted to the exact self-energy of the
cluster problem H’, so that variational parameters appear
in the definition of the one-body part of H’. To come back
to the question of the Weiss field M introduced at the be-
ginning of this section, we would set its value by solving
the cluster Hamiltonian - i.e., calculating Q" and G’ - for
many different values of M and evaluate the functional (55)
for each of them, selecting the value that makes Expression
(55) stationary. This is the idea behind the variational clus-
ter approximation (VCA), described in more detail in the
next section.

In practice, we look for values of the cluster one-body
parameters ¢’ such that §Q,[X]/6t = 0. It is useful for
what follows to write the latter equation formally, although
we do not use it in actual calculations. Given that ' is the
actual grand potential evaluated for the cluster, Q' / ot is
canceled by the explicit # dependence of Trin(—G_} + %)
and we are left with

_ o[x] 6%
- &% &t
1 1 5%
=—T - — . 56
r[(G—l—z thl—z)éit’] (56)

ot

ot

This may be explicited as

ZZ[( Otl—ﬁ(w))

W uy

6% (w)

U .
"Z( o () — z(w))] e O P

where Greek indices are used for compound indices gather-
ing cluster site, spin and possible band indices.




V. THE VARIATIONAL CLUSTER APPROXIMATION

The Variational Cluster Approximationl’22 (VCA), also
called Variational Cluster Perturbation Theory (VCPT), can
be viewed as an extension of Cluster Perturbation Theory
in which some parameters of the cluster Hamiltonian are
set according to Potthoff’s variational principle through a
search for saddle points of the functional (55). The clus-
ter Hamiltonian H’ is typically augmented by Weiss fields,
such as the Néel field (44) that allow for broken symmetries
that would otherwise be impossible within a finite cluster.
The hopping terms and chemical potential within H' may
also be treated like additional variational parameters. In
contrast with Mean-Field theory, these Weiss fields are not
mean fields, in the sense that they do not coincide with the
corresponding order parameters. The interaction part of H
(or H') is not factorized in any way and short-range corre-
lations are treated exactly. In fact, the Hamiltonian H is not
altered in any way; the Weiss fields are introduced to let the
variational principle act on a space of self-energies that in-
cludes the possibility of specific long-range orders, without
imposing those orders.

Steps towards a VCA calculation are as follows:

1. Choose the Weiss fields to add, aided by intuition about
the possible broken symmetries to expect.

2. Set up a procedure to calculate the functional (55).

3. Set up a procedure to optimize the functional, i.e., to find
its saddle points, in the space of variational parameters.

4. Calculate the properties of the model the saddle point.

A. Practical calculation of the Potthoff functional

Let & denote the (finite) set of variational parameters to
be used. The Potthoff functional becomes the function

/ TL 7. /(1.
Q) =0 — W;Zf(:lndet[l —V()G'(k, )] (58)

Once the cluster Green function is known by the methods
described in Sect. III, calculating the functional (58) re-
quires an integral over frequencies and wave-vectors of an
expression that requires a few linear-algebraic operations
to evaluate. Two different methods have been used to com-
pute these sums, described in what follows. We will see that
the second method, entirely numerical, is much faster than
the first one, which is partly analytic, a result that may seem
paradoxical.

1. Method I : Exact frequency integration

The integral over frequencies in (55) may be done ana-
lytically, with the result??

AH=QE)— D, +< Z DT w59

;<0 k w,(k)<0
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where the w! are the poles of the Green function G’ in the

Lehmann representation (B4) and the w, (k) are the poles
of the VCA Green function (Go_l(k) — )7L, The latter are

the eigenvalues of the R x R matrix L(k) = A + Q'V(k)Q
(see Appendix B1). R is the number of columns of the
Lehmann representation matrix Q, basically the total num-
ber of iterations performed in the band Lanczos procedure.

In practice, the first sum in (59) is readily calculated. The
second sum demands an integration over wave-vectors. For
each wave-vector k, one must calculate L(k) and find its
eigenvalues, a process of order R3. Other linear-algebraic
manipulations leading to the diagonalization of L(k) are
typically less time-consuming than the diagonalization it-
self. The computation time therefore goes like N,R®, where
N, is the number of points in a mesh covering the reduced
Brillouin zone (in fact half of the reduced Brillouin zone,
since inversion symmetry is assumed).

2. Method II : Numerical frequency integration

An alternate method of computing the sums in (58) is
to perform them in the reverse order, i.e., to first compute
the wave-vector sum for a fixed frequency w, and then in-
tegrating over frequencies numerically. The method used
to sum over wave-vectors is exactly the same as in Method
I above : a wave-vector mesh is set up in the reduced Bril-
louin zone. This mesh is either a fixed, regular grid, or an
adaptive mesh that is refined recursively as needed by com-
paring a two- and three-points Gauss-Legendre evaluations
within each cell (more accurately, the number of function
evaluations in each cell is 2¢ and 3¢, d being the dimension
of space).

In the limit of zero temperature, the second term of the
Potthoff functional (58) may be written as

IZJZm Zlndet[l—V(k)G(w)] (60)

where the frequency integral I is carried along a closed,
counterclockwise contour C that encloses the negative real
axis, following the usual prescription with Green functions.
We show in Appendix E that this integral reduces to

sz dXLZI |det(1—V(k)G(lx)) —L(u—u')
0

(61)
We refer to Appendix E for details, and for a discussion of
the merits of this approach compared to the exact method
above. This is the method that we generally follow.

B. Example : Antiferromagnetism

Let us start our examples with Néel antiferromagnetism.
The corresponding Weiss field is defined in (44). Fig. 5
shows the Potthoff functional as a function of Néel Weiss
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FIG. 5. Potthoff functional as a function of Néel Weiss field M for
various values of U, at half-filling, calculated on a 2 x 2 cluster.
The positions of the minima are indicated.

field M for various values of U, at half-filling, calculated
on a 2 x 2 cluster. We note three solutions per curve: two
equivalent minima located symmetrically about M = 0, and
a maximum at M = 0 corresponding to the normal state so-
lution. The normal and AF solutions both correspond to
half-filling, and the AF solution has a lower energy density
& = Q+ un. We therefore conclude, on this basis, that
the system has AF long-range order. Note that, as U is in-
creased, the profile of the curve is shallower and the mini-
mum closer to zero. Indeed, for large U, the half-filled Hub-
bard model is well approximated by the Heisenberg model
with exchange J = 4t2/U, and the curve should (and will)
scale towards a fixed shape when Q/J is plotted against
M /J (both dimensionless quantities). Fig. 6 shows how the
optimal Weiss field and the Néel order parameter vary as a
function of U. The Weiss field vanishes both as U — 0,
where the order disappears, and as U — ©o. In both limits
the energy difference between normal and broken symme-
try state (or ‘condensation energy’) goes to zero (Fig. 6),
and so should the critical (Néel) temperature. The order
parameter {0,,) increases monotonically with U and satu-
rates.

Fig. 7 shows the Potthoff functional as a function of Néel
Weiss field M for various cluster sizes, at half-filling and
U = 8. There is a clear and monotonous size dependence
of the position of the minimum. In particular, the opti-
mal Weiss field decreases as cluster size increases. This
should not worry us, quite on the contrary. The Weiss field
is needed only because spontaneously broken symmetries
cannot arise on a finite cluster. The bigger the cluster, the
easier it is to break the symmetry and the optimal Weiss field
should tends towards zero as the cluster size goes to infin-
ity. Finite-size scaling is generally very difficult, because
cluster sizes are small and clusters vary in shape as well as
size. Moreover, open boundary conditions are used rather
than periodic ones, which adds edge effects to size effects.
One needs to define a scaling parameter g, ranging between
0 and 1, that somehow defines the “quality” of the cluster
(q@ = 1 being the thermodynamic limit). Fig. 8 shows the
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FIG. 6. Optimal Néel Weiss field M and corresponding order pa-
rameter, as a function of U, at half-filling, calculated on a 2 x 2
cluster. Also shown is the ordering energy, i.e., the difference be-
tween the energy density of the normal state and that of the Néel
state (in fact the difference between the grand potentials of the
two solutions, since they both sit at half-filling).
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FIG. 7. Potthoff functional as a function of Néel Weiss field M for
various cluster sizes, at half-filling and U = 8. The clusters used
(from top to bottom) are: 2 x 2, 2 x 3, 2 x 4, B10 — see Fig. 1 —,
and 3 x 4. The positions of the minima are indicated.

optimal Néel Weiss field as a function of two possibilities
for the scaling factor g, for the half-filled Hubbard model
at U = 16. The first possibility (blue dots) isq =1—1/L,
which does not take into account the shape of the cluster.
The second possibility (red dots) corresponds to q defined
as the number of links on the cluster, divided by twice the
number of sites. This also goes to 1 in the thermodynamic
limit (for the square lattice), but this time takes into account
the boundary of the cluster. Indeed, 1—q corresponds to the
fraction of links of the lattice that are “inter-cluster” and
thus treated “perturbatively” in the CPT sense. In that case,
the scaling is good, as the optimal Weiss fields extrapolates
very close to zero in the ¢ — 1 limit. At the same time,
the AF order parameter also decreases, bu extrapolates to a
finite value, as shown on the same figure
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FIG. 8. Top: Optimal Néel Weiss field for the half-filled Hubbard
model at U = 16, as a function of scaling parameter. Blue points
: the scaling parameter is 1 —1/L, and the scaling is poor. Red
points : the scaling parameters is the number of cluster links di-
vided by 2L - this takes open boundary conditions into account.
We see how the Weiss field goes to zero in the thermodynamic
limit. Bottom: Same, for the Néel order parameter, which tends
to a finite value in the thermodynamic limit. Against the second
scaling parameter works better.

C. Superconductivity

Superconductivity requires the use of pairing fields as
Weiss fields, i.e., of operators creating Cooper pairs at spe-
cific locations. Generally, pairing fields have the form

o,.= Z Acqcp +He (62)

rr’

Different types of superconductivity correspond to different
pairing functions A,,.. For instance, ordinary (local) s-wave
pairing (a la BCS) corresponds to A,,, = §,,.. On a square
lattice, what is usually known as d,_,» pairing corresponds

_yZ
to
A 1 ifr—v =z=e, 63)
-1 ifr—v = te,
whereas d,, pairing corresponds to
1 ifr—¢ ==%x(e,+e,)
A, = ] , Y (64)
-1 ifr—r==x(e,—e,)
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FIG. 9. Profile of the Potthoff functional as a function of Weiss
field for various superconducting pairing fields. The extended s-
wave is defined as the same as (63), but without the sign change
between x and y directions.

The above two pairing are spin singlets.

Pairing fields, once introduced in the cluster Hamiltonian
H’ as Weiss fields, do not conserve particle number (but
conserve spin). This increases the computational burden,
since now the Hilbert space must be increased to include
all sectors of a given total spin. In practice, one uses the
Nambu formalism, which in this case amounts to a particle-
hole transformation for spin-down operators. Indeed, if we
introduce the operators

¢, =¢, and d, = le (65)
then the pairing fields look like simple hopping terms be-
tween ¢ and d electrons, and the whole cluster Hamiltonian
can be kept in the standard form (1), albeit with hybridiza-
tion between ¢ and d orbitals.

Fig. 9 illustrates the dependence of the Potthoff func-
tional on various superconducting pairing fields (generi-
cally denoted A). In that case, only d,._,. pairing leads to
a nontrivial solution. Others are piece-wise monotonously
increasing or decreasing function, with a single zero-
derivative point at A = 0.

D. Thermodynamic consistency

One of the main difficulties associated with VCA (or CPT)
is the limited control over electron density. In the absence
of pairing fields, electron number is conserved and clusters
have a well-defined number of electrons. This makes a con-
tinuously varying electron density a bit hard to represent.
Of course, one may simply vary the chemical potential u
and look at the corresponding variation of the electron den-
sity, given by the trace of the Green function (schematically,
TrG, see Appendix D). This provides a continuously varying
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FIG. 10. Comparisons of the estimates of the electron density n
as a function of chemical potential u, with different methods of
calculation, for the normal solution, at U = 8, on a 2 x 2 cluster.
The subscript ‘cons.” means that the corresponding quantities were
computing in a thermodynamically consistent way, by using u’ as
a variational parameter.

estimate of the density as a function of u. An alternate way
of estimating the density is to use the relation

(66)

where the grand potential Q) is approximated by the Pot-
thoff functional at the solution found, and u is varied as an
external parameter. The problem is that the two estimates
do not coincide (see Fig. 10). In other words, the approach
is not thermodynamically consistent. The recipe to make it
consistent is simple : the chemical potential u’ of the cluster
should not be assumed to be the same as that of the lattice
system (u), but should be treated as a variational parame-
ter. If this is done, then the two methods for calculating n
given precisely the same result (see Fig. 10), and this can
easily be proven in general. Results on a Hubbard model for
the cuprates with thermodynamic consistency are shown on
Fig. 11; see also Ref. 23.

E. Searching for stationary points

Let x; be the n different variational parameters used in
VCA. Once the function (&) may be efficiently calculated,
it remains to find a stationary point of that function. This
point is not necessarily a minimum in all directions. Indeed,
experience has shown that w is a maximum as a function
of the cluster chemical potential u’, while it is generally a
minimum as a function of symmetry-breaking Weiss fields
like M or A.

The Newton-Raphson algorithm allows one to find sta-
tionary points with a small number of function evaluations.
One starts with a trial point &, and an initial step h. Let e;
denote the unit vector in the direction of axis i of the varia-
tional space. The function w is then calculated at as many
points as necessary to fit a quadratic form in the neighbor-
hood of &,. This requires (n + 1)(n + 2)/2 evaluations, at

0
06 07 08 09 10 11 12 13 14 15 16
n

FIG. 11. Order parameters for d,>_,» pairing and Néel antiferro-
magnetism for a model of the high-T, cuprates with U = 8, di-
agonal hopping t; = —0.3 and third neighbor hopping t, = 0.2.
Calculations are performed on a 3 x 4 cluster. Three solutions
are displayed: (1) a pure d,2_,2, obtained with two variational
parameters (u’ and A,2_2); (2) a pure Néel solution obtained by
varying u’ and the Néel Weiss field M ; a homogeneous coexistence
solution obtained by varying u’, M and A,2_,» (From M. Guillot,
MSc thesis, Université de Sherbrooke).

points like &,, &, & he;, and a few of &, + h(e; + ;). The
stationary point &; of that quadratic form is then used as a
new starting point, the step h is reduced to a fraction of the
difference |&; —&;|, and the process is iterated until conver-
gence on |&; — &;_;| is achieved. A variant of this method,
the quasi-Newton algorithm, may also be used, in which the
full Hessian matrix of second derivatives is not calculated.
It requires in general more iterations, but fewer function
evaluations at each step.

The advantage of the Newton-Raphson method lies in its
economy of function evaluations, which are very expensive
here: each requires the solution of the cluster Hamiltonian.
Its disadvantage is a lack of robustness. One has to be rela-
tively close to the solution in order to converge towards it.
But one typically runs parametric studies in which an exter-
nal (i.e. non variational) parameter of the model is varied,
such as the chemical potential u or the interaction strength
U. In this context, the solution associated with the current
value of the external parameter may be used as the starting
point for the next value, and in this fashion, by proximity,
one may conduct rather robust calculations.

A more robust method, albeit more time consuming, is
the conjugate-gradient algorithm, which we will not explain
here as it is amply documented and fairly common. How-
ever, this algorithm finds minima (or maxima), not saddle
points in general. We must therefore take the extrinsic step
of identifying parameters (like u’ above) that are expected
to drive maxima of w, and a complementary set of param-
eters (like M and A above) that drive minima of w. One
then, iteratively, finds maxima and minima with the two
sets of parameters in succession, and stops when conver-
gence on |§; — &_;| has been achieved. This method is



E92 €2 5p) £2
O [ O [
\‘tQ tQ,’I \‘tz tz/’
*—¢ o ® ® ¢
Ity 1\ It 1

O O
€1 €1 €1 €1

FIG. 12. Examples of clusters with baths. Bath sites are square,
cluster sites blue circles. Bath parameters for the normal solution
are indicated on the two top clusters, while conventional labels of
orbitals are indicated for the (4+8)-site cluster.

suitable to find a first solution when the Newton-Raphson
method fails to deliver one. It may however converge to
minima that are in fact singularities of w, i.e., points where
the derivatives are not defined. Such points may occur as
the result of energy-level crossings in clusters and are an
artifact of the finite-cluster size.

VI. THE CELLULAR DYNAMICAL MEAN FIELD THEORY

The Cellular dynamical mean-field theory (CDMFT) —
also called Cluster dynamical mean-field theory —is a cluster
extension of Dynamical mean-field theory (DMFT). Since
there is no real pedagogical gain in describing first DMFT,
we will proceed directly to CDMFT, in the context of a an
exact diagonalization solver.

The basic idea behind CDMFT is to model the effect on
the cluster of the remaining degrees of freedom of the lattice
by a bath of uncorrelated orbitals that exchange electrons
with the cluster, and whose parameters are set in a self-
consistent way. Explicitly, the cluster Hamiltonian H’ takes
the form

H =— Z twc;cv + UZ NRiNR|
u,v R
+ Z Oualcla, +H.e) + Z g.ala,  (67)
u,a a

where a, annihilates an electron on a bath orbital labeled
a. The label a includes both an ‘bath site’ index and a spin
index for that ‘site’. The bath is characterized by the energy
of each orbital (¢,) and by the bath-cluster hybridization
matrix 6,,, (the index u includes cluster site, spin and band
indices). This representation of the environment through
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an Anderson impurity model was introduced in Ref. 24 in
the context of DMFT (i.e., a single-site cluster). Note that
‘bath site’ is a misnomer, as bath orbitals have no position
assigned to them.

The effect of the bath on the electron Green function is
encapsulated in the so-called hybridization function

0,05,
I, (w)= ), 228 68)

w—Eg,
which enters the electron Green function as
G l=w—t—T(w)—3(w) (69)

This is shown in Appendix F in the non-interacting case
(¥ = 0). By definition, the only effect of adding the
electron-electron interaction is to add the self-energy X, as
above.

A. Bath degrees of freedom and SFA

The CDMFT Hamiltonian (67) defines a valid reference
system for Potthoff’s self-energy functional approach, since
it shares the same interaction part as the lattice Hamiltonian
H and since each cluster of the super-lattice has its own
identical, independent copy. From the SFA point of view,
the bath parameters {¢,, 6,,} can in principle be chosen in
such a way as to make the Potthoff functional stationary. A
subtlety arises: the bath system must be considered part of
the original Hamiltonian H, albeit without hybridization to
the cluster sites, in order for both Hamiltonians to describe
the same degrees of freedom; but within H we are free to
give the bath trivial parameters (¢, = 0). Performing VCA-
like calculations with bath degrees of freedom is illustrated
in Ref. 25, and on Fig. (13) below.

When evaluating the Potthoff functional in the presence
of a bath, one must add a contribution from the bath to
Trln(—G’), which takes the form

Qba\th = Z €a (70)

£,<0

and which comes from the zeros of the cluster Green func-
tion induced by the poles of the hybridization function.
Note that the zeros coming from the self-energy cancel out
in Eq. (59) between the contribution of Trin(—G’) and that
of Trin(—G), but not those coming from I'(w), as they only
occur in G'.

B. The CDMFT self-consistent procedure

However, in practice, CDMFT does not proceed in this
way, i.e., it does not look for a strict solution of the Euler
equation (57). It tries instead to set each of the terms be-
tween brackets to zero separately. Since the Euler equation
(57) can be seen as a scalar product, COMFT requires that
the modulus of one of the vectors vanish to make the scalar
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FIG. 13. Electron density as a function of chemical potential, for
the one-dimensional Hubbard model, at U = 3. The black curve is
the exact result from the Lieb-Wu solution using the Bethe Ansatz.
The red curve is the SFA calculation on the 2-site cluster with 4
bath sites shown on Fig. 12. The other curves are obtained with
the CDMFT algorithm (parameters explained in the text).

0 | | | 0.4 | | |
085 1.05 1.25 1.45 0

u ' o

FIG. 14. Two of the four bath parameters used in the calculations
of Fig. 13, as a function of u. The legend is the same as for Fig. 13.

product vanish. From a heuristic point of view, it is as if
each component of the Green function in the cluster were
equal to the corresponding component deduced from the
lattice Green function. Clearly, the left-hand side of Eq. (57)
cannot vanish separately for each frequency, since the num-
ber of degrees of freedom in the bath is insufficient. In-
stead, one adopts the following self-consistent scheme (see
Fig. 15):

1. Start with a guess value of the bath parameters (6,,,, &),
that define the hybridization function (68).

2. Calculate the cluster Green function G(w) with the Exact
diagonalization solver.

3. Calculate the super-lattice-averaged Green function

- L 1
G(w) = NZ,;: ) 1)
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FIG. 15. The CDMFT algorithm with an exact diagonalization
solver.

and the combination

9 (0)=G" +3(w) (72)

4. Minimize the following distance function:

d= Y [(0+u—t-T()-9;"),,|

w, v,V

(73)

over the set of bath parameters (changing the bath pa-
rameters at this step does not require a new solution of
the Hamiltonian H’, but merely a recalculation of the hy-
bridization function I').

5. Go back to step (2) with the new bath parameters ob-
tained from this minimization, until they are converged.

In practice, the distance function (73) can take
various forms, for instance by adding a frequency-
dependent weight in order to emphasize low-frequency
properties®’’»*® or by using a sharp frequency cutoff.>’
These weighting factors can be considered as rough ap-
proximations for the missing factor 52;“(w) /6t in the Eu-
ler equation (57). The frequencies are summed over on a
discrete, regular grid along the imaginary axis, defined by
some fictitious inverse temperature 3, typically of the order
of 20 or 40 (in units of t~1). Even when the total number
of cluster plus bath sites in CDMFT equals the number of
sites in a VCA calculation, CDMFT is much faster than the
VCA since the minimization of a grand potential functional
requires many exact diagonalizations of the cluster Hamil-
tonian H'.
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FIG. 16. Néel (AF) and d-wave (dSC) order parameters obtained
from CDMFT applied to the (4+8)-cluster of Fig. 12, for the two-
dimensional Hubbard model with U = 8 and diagonal hopping
t’ = —0.3. The data is shown as a function of the calculated lattice
density n. The order parameters are calculated using the same
operators as in the corresponding VCA calculation illustrated on
Fig. 9, even though these operators played no role in the solution:
they are merely used as a probe. In this calculation, we set § = 20
and a sharp cutoff w, = 3 was used. The dSC and AF solutions
were both allowed simultaneously (9 bath parameters) and there
are regions of coexistence of the two orders.

C. Examples

Let us start with a one-dimensional example. Fig. (13)
illustrates the variability of CDMFT results related to the
choice of the distance function. The cluster used has two
sites and four bath sites (see Fig. 12), and the various curves
represent the electron density n as a function of chemi-
cal potential u for the one-dimensional Hubbard model at
U = 3. The exact results, from the Lieb-Wu solution, is
shown in black, as well as the SFA result coming from an
exact solution of the Euler equation (57) for that system.
The four CDMFT results shown differ by the value of f3
and that of the sharp frequency cutoff w,. In addition,
one of the curves was obtained by weighing the different
frequencies by a factor 1/|w|. An important characteristic
of the exact result is that infinite compressibility dn/du at
the point where the gap ends, i.e., when the density curve
hits n = 1, at a value u.(U) of the chemical potential. The
SFA and CDMFT do quite well in accounting for the infinite
compressibility, contrary to other approaches (e.g. one-site
DMFT). On this small two-site system, they do not find the
correct u., but increasing the bath size would improve on
this. By playing with the distance function, on may bring
the curves closer to or further from the exact result, but
there is no guarantee that the most successful distance func-
tion in this case will be as profitable when the exact solution
is unknown! In principle, the SFA curve (red) is the one that
best represents what can be achieved with this system, and
the various CDMFT curves are to be judged against not the
exact result, but against the SFA curve.

Next, consider the two-dimensional cluster illustrated in
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the lower part of Fig. 12. This 4-site, 8-bath site cluster
is the main cluster used in CDMFT simulations of high-T,
cuprates using the two-dimensional Hubbard model. It is
useful in that case to view the orbitals numbered 5 to 8 as a
first bath set, and the orbitals numbered 9 to 12 as a second
bath. Each site of the cluster is connected to one orbital of
each set. In studying the normal state, and taking into ac-
count the symmetries of the cluster, we would need 4 bath
parameters: one bath-cluster hopping and one bath energy
for each set. In order to treat a possible antiferromagnetic
phase, one must modify the bath energies and hopping in
a spin-dependent way. The gray and white squares on the
figure then distinguish orbitals of a given bath according
to their shift in site energy (of opposite signs for opposite
spins). The corresponding bath-cluster hybridization may
also be different, which makes a total of 8 parameters. Fi-
nally, in order to study d-wave superconductivity, we intro-
duce pairing within each bath (red dotted lines on the fig-
ure), vertical and horizontal pairing being of opposite signs.
This introduces an additional parameter, for a total of 9. At
this point, an important remark is in order : Formula (68)
for the hybridization function only applies if the bath or-
bitals are not hybridized between themselves. The d-wave
pairing just described certainly breaks that condition. This
is not a problem, however, if we perform a change of vari-
ables within bath degrees of freedom (a Bogoliubov trans-
formation) prior to solving the problem numerically, such
as to make the bath Hamiltonian diagonal. Then the poles
of the hybridization function no longer correspond to the
bath energies as defined originally in the model, but rather
to the eigenvalues of the bath Hamiltonian.

Results of a CDMFT calculation on this system are shown
in Fig. 16. Comparing with the VCA result of Fig. 11, we no-
tice first the similarities: the existence of a dSC phase away
from half-filling for both electron and hole doping and the
possibility of homogeneous coexistence between antiferro-
magnetism and d-wave superconductivity. But differences
are obvious : the VCA diagram is more asymmetric than the
CDMFT one in terms of electron vs hole doping. Both calcu-
lations agree on the critical doping for antiferromagnetism
on the hole-doped side (~ 10%), but not on the electron-
doped side. The VCA result does not show homogeneous
coexistence between AF and dSC on the hole-doped side —
although it appears on smaller clusters. At this point it is not
clear whether these differences arise because of the meth-
ods themselves rather that the particular way they were ap-
plied (choice of Weiss fields, bath configuration, distance
function, etc.). In particular, the exact SFA result for the
system used in CDMFT has not yet been calculated.

VII. THE DYNAMICAL CLUSTER APPROXIMATION
Appendix A: Clusters and Kinematics

In this appendix we will review the kinematics of clus-
ter decompositions, and introduce notation used through-
out this paper. The spatial dimension D of the lattice will



be left general.

Cluster methods are based on a cluster decomposition
of the model, i.e., on a tiling of the original lattice y with
identical clusters of L sites each. Mathematically, this cor-
responds to introducing a super-lattice T', whose sites form
a subset of the lattice y and will be labeled by vector base
positions with tildes (#, #, etc). This super-lattice is gener-
ated by D basis vectors e; _j, belonging to v, i.e., every site
7 of the super-lattice may be expressed as an integer linear
combination of these basis vectors. Associated with each
site of T" is a cluster of L sites, whose shape is not uniquely
determined by the super-lattice structure. The sites of the
clusters will be labeled by their vector position (capitals):
R, R’, etc. Each site r of the original lattice y can be ex-
pressed in a unique way as a combination of a super-lattice
vector # and of a site R within the cluster: r = #+ R. We
have the following equivalence between summations:

IS N o

rey el

The number of sites in the cluster is simply the ratio of the
unit cell volumes of the two lattices. In D = 3, this is

V;
L=—=|(e;Aey)-es] (A2)
VY

(the above formulae can be adapted to D = 2 by setting
e; =(0,0,1)).

The Brillouin zone of the original lattice, denoted BZ,,
contains L points belonging to the reciprocal super-lattice
I'*. The Brillouin zone of the super-lattice, BZ, has a vol-
ume L times smaller than that of the original Brillouin zone.
Any wave-vector k of the original Brillouin zone can be
uniquely expressed as

k=K+k, (A3)

where K belongs both to the reciprocal super-lattice and to
BZ,, and k belongs to BZ; (see Fig. 17). Thus, we have
the equivalent summations

Zkzzzk:; (A4)

The passage between momentum space and real space,
by discrete Fourier transforms, can be done either directly
(r < k), or independently for cluster and super-lattice sites

(# <= k and R «<— Q). This can be encoded into unitary
matrices U7, U' and U° defined as follows:

1 . L . 1 )
Y _ —ik-r r _ kT c _ _— L,7iKR
Uk’r— me , Uf(; Ne , UK’R ﬁe
(AS5)
The discrete Fourier transforms on a generic one-index

quantity f are then

fU= UL f, FUY=D UL fi, fu= D Ugpfr
r 7 R
(A6)
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or, in reverse,

Z UL f(R), fr =D Ul

K
(A7)
where f stands for a generic one-index quantity. Quasi con-
tinuous indices, like k and k, are most of the time indi-
cated between parentheses. This notation may rightfully be
deemed capricious, since the labels ¥ and k take the same
number N of values, but we adopt it nonetheless as it helps
reminding us that the values of the labels are closely sepa-
rated.
These discrete Fourier transforms close by virtue of the
following identities

I% ; eik‘r —
I%Zi(:eiic-i _

%ZeiK-R =5g %Ze—lKR A,(K)

K R

fr= DUl f k), fr=
k

1 )
~ dlekr=Ak) (@8
L . -

5 Z ek = ALR)  (A9)
(A10)

where 6, is the usual Kronecker delta, used for all labels
(since they are all discrete):

5, =L Fa=0 5.,=6 All
*" |0 otherwise ap = Zap> (A1l)
and the A’s are the so-called Laue functions:
AR =D kg (A12)
Qey*
Ac(R) =" 84,p - (A13)
Per*

Laue functions are used instead of Kronecker deltas in mo-
mentum space because of the possibility of Umklapp pro-
cesses. Note especially that even though

Sr=06i6x (k=k+K), (A14)
the same does not hold for the Laue functions:
A, (k) # Ar(l)A, (K) . (A15)
Instead we have the following relations:
Ar(R) =>4, (k+K) (A16)
K
A, (k)= A,k +K)=65;4,(K) (A17)

which reflect the arbitrariness in the choice of Brillouin zone
of the super-lattice (we use the term Brillouin zone in a
rather liberal manner, as a complete and irreducible set of
wave-vectors, and not as the Wigner-Seitz cell of the recip-
rocal lattice.)
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FIG. 17. The reduced Brillouin BZ; zone associated with the 10-
site cluster of Fig. 1. A wave-vector k has a unique decomposition
k = k + Q, where Q is one of the L elements of the reciprocal
super-lattice that belongs to the original Brillouin zone BZ,.

A one-index quantity like the destruction operator ¢, =
;g can be represented in a variety of ways, through partial
Fourier transforms:

cr(k) =D UL crup (A18)
Cik = Z Ukr Ci+R (A19)
R
cx (k) = Z UL U g Crar (A20)
7R
(A21)

ck)=>Ulc

The last two representations are not identical, since the
phases in the two cases differ by k-R. In other words, they
are obtained respectively by applying the unitary matrices
S = U" ® U° and U" on the r basis, and these two opera-
tions are different. In other words, the matrices A = U7 S™*
and D = S™'U? are not trivial:

1 . 1 7
A =85 7 D e iRk (A22)
R
L e o
Dy = ke > efkGR) (A23)
k
and one could write
(A24)

e(k+K) =D Awe(R)ex (k)
Q

A two-index quantity like the hopping matrix t,. may
thus have a number of different representations. Due to
translation invariance on the lattice, this matrix is diagonal
when expressed in momentum space: t(k,k’) = (k)& y/,
£(k) being the dispersion relation:

1 o
= Z ek g (k) (A25)
k
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However, we will very often use the mixed representation

- r=R
tRR’(k) = Zelk rtrr’ {1"/ —7+R

7

(A26)

For instance, if we tile the one-dimensional lattice with clus-
ters of length L = 2, the nearest-neighbor hopping matrix,
corresponding to the dispersion relation (k) = —2t cos(k),
has the following mixed representation:

- 0 1+4e2k
t(k) =—t ~
© (1+e2”< 0 )

Finally, let us point out that the space E of one-electron
states is larger than the space of lattice sites y, as it includes
also spin and band degrees of freedom, which forms a set B
whose elements are indexed by 0. We could therefore write
E = y®B. The transformation matrices defined above (U",
U’ and U°) should, as necessary, be understood as tensor
products (U" ® 1, U" ® 1 and U° ® 1) acting trivially in B.
This should be clear from the context.

(A27)

Appendix B: Lehmann representation of the Green function

By inserting a completeness relations in the expression
(26) for the zero-temperature Green function, one finds the
Lehmann representation:

, 1 .
G, (w) =Z<Q|Cu|m>m<m|%|ﬂ)

" 1 (B1)
+ Qlcfn) ———(nc, |0
240U In) o tnle )

(recall that u = (R, o) is a compound index for cluster site
and spin or band). The two sums are over different sets
of eigenstates, in the spaces with one more and one less
electron, respectively. Let us introduce the notation

Q) = (Qlcylm) QW =(Qlcfln)  (B2)
as well as wffl) =E,—E;> 0 and wflh) =—E,+E;<O0to
write

Q(e) Q(e)* Q(h)Q(h)*
/ . um <vm un <vn
G(@) _Z o o +Z o o™ (B3)
m m n n

The for)n form a 2L x N(©) matrix, where N(® is the number
of states |m) that give a nonzero contribution to the first
sum above. Likewise, The Qﬂ% form a 2L x N® matrix. Let

N =N© + N® and let us introduce a 2L x N matrix Q by
joining vertically the matrix Q™ below the matrix Q'®), and
let w, denote the elements of the concatenated sets {coffl)}

and {wg‘)}. Then we can write

G () = Z Q. Q,,

w—w,

(B4)

r



If we introduce the diagonal matrix A, = 6,,w, and

1
g(w)= A (B5)
then we have the matrix expression
G(w) = Qg(w)Q" (B6)

This is a very general representation of the exact cluster
Green function.

1. The Lehmann representation and the CPT Green function

Let us see how the CPT Green function can be explicitly
represented in terms of the Lehmann representation (B4).
The CPT Green function (3) can be written as?

1
(Qg(w)Q") — V(k)
= Qg(»)Q" +(Qg(£)QNV(Qg(w)Q") ++-
= Q(g(w) +8(0)(Q'VQIg(w) +-+- ) Q'
T L(k) Q

where L(k) = A + QTV(INC)Q. The poles of G(k,w) are
those of [w— L(k)]™%, which we denote as wr(fc). They are
simply the eigenvalue of the N x N matrix L(k).

Let U(k) the matrix that diagonalizes L(k), such that

G(k,w) =

(B7)

U(k) LU’ (k) = A(k) (B8)
where A(k) is diagonal. Then we write
Gk, w) = t ———(QU(k))
(k, w) Qw L(k)Q Q()_()(Q())
(B9)

which again is of the same form as (B4), with Q replaced
by Q(k) = QU(k).

The representations (B4) or (B9) ensure the positivity
of the cluster Green function and the CPT Green function
respectively, i.e., the positive character of the correspond-
ing spectral functions. Indeed, the local (cluster) spectral
weight is

o / ;
Ayw) = 2}’12(1) ImGw(a) +in) (B10)

and

G (w)=> 1l (B11)
o - w,

This expression has poles on the real axis only with pos-

itive residues, and this guarantees that the corresponding

spectral function A, (w) is positive. Moreover, the property

QQ" = 1 ensures it is normalized.

The same reasoning as above applies to the CPT Green
function (B9), because it has the same Lehmann structure,
and the matrix Q(k) also has the property Q(k)Q(k)r =1,
since the matrix U(k) is unitary.
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FIG. 18. Clusters with C, symmetry. Black and gray dots rep-
resent inequivalent sites, e.g., because of the presence of a Néel
Weiss field. The top and bottom clusters are invariant under 7-
rotations, and the right-most cluster is invariant under a left-right
inversion. The distinction is of course irrelevant for the middle,
one-dimensional cluster.

Appendix C: Group theoretical concepts

This short appendix summarizes some key group-
theoretical concepts necessary to understand the discussion
of Sect. III E. Of course this is no substitute to a text on group
theory. It merely serves as a reminder to those who have
some knowledge of it, or indicates some important concepts
to those who don't.

Let & denote the discrete symmetry group of the system
and |®| the number of elements in the group (the order of
the group). Elements of the group will be denoted by Latin
letters like g, h, etc. and gh will stand for group multipli-
cation, i.e., the symmetry operation obtained by applying
first h, then g. Recall that the set & forms a group if the
following conditions are met:

1. The set must be closed under the group multiplication,
i.e., if g; and g, belong to &, so must g, g,.

2. There must be a neutral element e (the identity transfor-
mation) such that eg = ge.

3. Each element g must have a unique inverse g~ such that
ggl=g'g=e.
4. The group operation must be associative : (g;g,)gs =

81(8283)-

The group multiplication may or may not be commutative.
In the first case, the group is said to be Abelian.

The simplest non trivial group is C,, the group of two
elements formed by the identity transformation and a 7 ro-
tation (or, equivalently, an inversion). Examples of cluster
systems with this symmetry group are illustrated on Fig. 18.
Another common symmetry group is C,,,, which consists of a
m-rotation c, and two inequivalent reflections (o, and o).
This is the symmetry group of a rectangular cluster, or of a
square cluster with d,._,. pairing, for instance. Examples
are illustrated on Fig. 19.

A representation of the group & is a set of matrices that
behave exactly like the group elements when group multi-
plication is mapped onto matrix multiplication (i.e., there



FIG. 19. Clusters with C,, symmetry. Dashed links on the square
cluster illustrate the presence of a d,._,» pairing field, which
makes horizontal and vertical links inequivalent.

Coyle ¢ 01 0y
Cyle ¢ (A1 1 1 1
Al 1f (A |1 1-1-1
B |1 -1| |B; |1 -1
B, [1-1-1 1

Cyule ¢y 2¢4 20, 20,
Al 11 1 1
A1 1 1 -1 -1
B;|11 1-1 1 -1
B,|1 1-1 -1 1
E |2-2 0 0 O

FIG. 20. Character tables for the groups C,, C,, and C,,.

is an isomorphism between the abstract group and the set
of matrices). In practice, quantum mechanics deals with
group representations. The word representation is also ap-
plied to the vector space (or module) on which the matrix
representation is based. A representation is said to be re-
ducible if a change of basis can bring all group elements to
the same block-diagonal form. Thus, reducible representa-
tions are direct sums of irreducible representations. It it the
latter that are important, in great part because of Schur’s
lemmas, which imply that if a Hamiltonian matrix H com-
mutes with all the group elements and if the basis states
are arranged into irreducible representations, then H has
no matrix elements between states belonging to different
representations, i.e., it is block diagonal. We often say irrep
for ‘irreducible representation’.

Two group elements g; and g, are said to be conjugate to
each other if g; = h™!g,h for some element h of the group.
This property is transitive, and therefore all the elements of
a group may be organized into equivalence classes called
conjugacy classes. Because elements of a conjugacy class
are related by a similarity transformation, they all have the
same trace in a given representation. This trace is called the
character (denoted y) of the class in the said representation.
The identity element e forms a conjugacy class all by itself,
and its character is the dimension of the representation. It
can be shown that the number of inequivalent irreps is the
same as the number of conjugacy classes. Characters are
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often displayed in tables (Fig. 20), as a function of the con-
jugacy class (horizontal) and irreps (vertical). These tables
are extremely useful, for instance, to reduce tensor prod-
ucts of irreps. Indeed, the trace of a matrix tensor product
is the product of the traces of the factors, whereas the trace
of a direct sum of matrices is the sum of the traces.

Consider, for instance, the character table of C,,. We
learn from it that this group has 4 disinct irreps, all of di-
mension one. Representation A; is the trivial representa-
tion, with states even under all symmetry transformations.
A, contains states that are odd under either reflection. B,
and B, contain states that are odd under a 7-rotation, and
under one of the two reflections. C,,, on the other hand,
has 5 irreps, of which the last (E) is two-dimensional and
contains states that are mixed or interchanged under 7/2
rotations or reflections.

When working in a reducible space that is the direct
sum of different irreducible representations, it is possible
to project onto the various irreps making up that space us-
ing the following projection operators:

d *
p@ — ﬁZzé‘” g
4

where g stands for a symmetry operation in the reducible
space considered and xé“) is the character in the irrep a of
the corresponding group element.

(C1)

Appendix D: Calculating averages from the Green function

This appendix explains how to calculate the expectation
value of a one-body operator from the Green function.

A general one-body term of the Hamiltonian is written as

7 :saﬁc;cﬂ (D1)

where the indices a and 3 stand for all degrees of freedom

on y ® B: lattice site, spin and band. In the simple case of

the number of electrons, the matrix s is diagonal:

sro,r’o’ = 51’1" 500-/ (D2)

In the case of the antiferromagnetic order parameter, it is

also diagonal and has the form

Q=(mm)  (D3)

— o LiQr
Sro ol = 5rr’5aa’(_1) e Q

We are interested in the expectation value density 0 =
sqplcicp)/N.

From the Lehmann representation of the Green function,
we see that (c/ c4) is given by the integral of the Green func-
tion along a contour C_ surrounding the negative real fre-
quency axis counterclockwise:

(C;Ca> = f EGonﬂ(z)

- (D4
c. 27l



Therefore the expectation value we are looking for is

1

_ 1 dz
— T —
0= NSﬂOL(CﬁCa) = ﬁ JC oy tl’[SG(Z)]

(D5)
Here the trace includes a sum over lattice sites, spin and
band. In a mixed representation, with cluster sites indices
and reduced wave-vector instead of the lattice site index,
this becomes

(D6)

_ _ZJ —tr [s(k)G(k,2)]

where we assumed that the matrix s is diagonal in k.

Next, let us consider the asymptotic behavior of the Green
function as z — co: G(z) — 1/z. This allows us to modify
Eq. (D6) as follows:

é=—zf

where p > 0 (in practice, we use p ~ 1). The term we
added does not contribute, since its unique pole lies outside
of the contour. However, this term modifies the asymptotic
behavior of the integrand, which nows decays as 1/z2. This
allows us to replace the contour C. by an integral along
the imaginary axis, plus an infinite semi-circle that does not
contribute, since the integrand falls faster than 1/z.

Next, consider the part of the contour C_ that lies above
the real axis, and let us follow this contour clockwise and
call it C. Let C’ be the mirror image of C below the real
axis, followed counterclockwise. To each z and dz of C cor-
respond the mirror images z* and dz* on C’, so that

trs(k) } D7)
—P

{tr s(k)G(k,2)]—

I[C']zJ dzf(z)zJ. dz*f (z") (D8)
c c

If, in addition, the integrand is such that f (z*) = f *(z), then

I1[C’] =f dz*f*(z) = (J dzf(z))* =I*[C] (D9)
o c

The integral of f(z) along the counterclockwise contour C.
would then be

I[c.1=I[C'1-I[C]=TI*[C]—I[C]=—2iImI[C] (D10)

One of the properties of the Green function is its hermitic-

ity: Gop(z") = Gza(z). In the mixed Fourier representation,

this is rather expressed as G(k,z*) = G'(—k,z). We also

assume that s is Hermitian: s(k) = s'(—k) so that the ex-

pectation value is real. This means that the integrand of the

expectation value respects the condition f (2*) = f*(2).
Finally, the expectation value has the expression

- _ZJ —Re{tr s(k)G(k, iw)] - trs(k)}

p
(D11)
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Appendix E: Evaluation of the Potthoff functional

In this appendix, we show how to evaluate the frequency
integral (60). Let us take that contour to be the whole
imaginary axis between —iR and iR, with a half-circle of
radius R closing the contour on the left part of the complex
plane. Let us first see what the behavior of the integrand
is as |w| — o0. Since G'(w) ~ 1/w as w — o0, one may
write, in that limit,

Indet [1 — V(f()G’(co)] = trln [1 - V(ic)G’(w)]

trln[l—w]fv—— trv (k) (E1)

The integration over wave-vectors yields
L ~ L
ﬁz trv(k) = NZ taa— D, (@—00) (E2)
k a 2

The only contribution from these terms is the chemical po-
tential, by definition. Thus the 1/w term in the integral I
is

1
P(w) = 2L(,u,—u'); (E3)

This term by itself does not contribute to the frequency in-
tegral. Indeed, let us arrange for the contour C, which nor-
mally should cross the origin, to avoid it along an infinites-
imal semi-circle C; of radius n centered at the origin and
lying on the left-hand half-plane. This slight modification
should not change the value of €, if we refer to the exact
method of the previous subsection, as the zero frequency
does not contribute. Then the above term does not con-
tribute, since the pole at w = 0 lies outside the contour. It
can therefore be subtracted and the frequency integral has
the following expression:

I=J2m{ Zlndet(l V()G (w))— P(co)}

in which the integrand now falls like 1/w? at large frequen-
cies, and the half-circle of radius R — oo does not con-
tribute to the integral. Let us use the properties

G(—ix) = G(ix)* V(—ix, k) = V(ix,—k)* (E4)
to express the integral over the whole imaginary axis as an
integral over the ‘positive’ imaginary axis only. With w =
ix, we write

I—J dx LZ [ Indet(1 - V(R)G'(ix))

(ES5)
+Indet(1— V(—fc)*G’(ix)*)] - f d—wP(w)

c, 2mi

Note that P(w) does not contribute to the integral along
the imaginary axis, since it is odd in x; in other words, the



TABLE II. Comparison of the performance of the numerical inte-
gration (NI) and analytic integration (AI) of frequencies in the
calculation of the Potthoff functional. Case A represents the cal-
culation of 33 values of 2 for a four-site cluster at half-filling. Case
B represents a single Q calculation on a 9-site cluster away from
half-filling (n = 0.89). The net computation time is given in sec-
onds, as well as the number of integration points n, and the size N
of the Lehmann matrix Q. The values of Q obtained are the same
for both methods, to the requested accuracy indicated on the top
TOW.

precision— 1077 1078
Case [method ||time (s.) n, || time (s.) n, N
A NI 1.1]163,803 2.51390,144

Al 7.4| 6,045 24.8| 20,605|| 32
B NI 10.3|135,890 22.21312,420

Al 5,551| 11,856| 13,481| 28,886|/413

principal value is taken and corresponds to the contribu-
tion of the small half-circle C,. We also note that the main
part of the integrand does not have a contribution along the
contour Cy, since the logarithmic singularity near w = 0 is
integrable, i.e., leads to a vanishing contribution on C; as
1 — 0. Since integrating over k and over —k are equivalent,
one further simplifies to

oo

I= f dx L > | det(1— V(K)G'(ix))| — L(u— ')
o TN T

(E6)

Numerical integration should be carried out using li-
braries that provided a controlled accuracy. We recommend
the CUBA library’ , in particular the Cuhre method, which
is quite efficient in 2 to 4 dimensions. This method uses an
adaptive integration mesh that is refined where needed, as
judged by comparing Gaussian integration rules of different
orders.

Tests have been conducted in order to compare the speed
and accuracy of the two methods: the analytic frequency
integration (AI) described in Sect. VA 1, and the numerical
frequency integration (NI) described in this section. The
results are displayed in Table. II.

Appendix F: Fermionic Baths and hybridization functions

In this short appendix we consider the Hamiltonian

— T T T x o F
H= E EurC,Cy + Z £,a, A, + E (Gwcuaa + Gwaacu)
wy a e

(F1)
and show that the Green function obtained by tracing over
the bath degrees of freedom has the form

0,.0%
(Gq)wzw_tm_Zu . (F2)

~ w—e¢,
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First of all, the full Green function associated with the
above one-body Hamiltonian is

1
Gra(w) = T (F3)

where the full hopping matrix has the block form

—t 0
T = (0_6_ _s) (F4)

where t is the hopping matrix within cluster degrees of free-
dom only, 8 the hopping matrix between bath and cluster
orbitals, and e the diagonal matrix of bath energies ¢,. The
Green function obtained by tracing out the bath degrees of
freedom is simply the restriction of Gg,; (and not of its in-
verse) to the cluster degrees of freedom only. The mathe-
matical problem at hand is simply to invert a 2 x 2 block

matrix
-1
(An Alz) _ (311 Blz) (F5)
A21 A22 BZI B22 ’

Where All = w— t, A12 =A-£1 = 0, A22 = w—E¢, and B11 is
the Green function we are looking for. By working out the
inverse matrix condition, we find in particular that

A11B11 +ApBy =1 (F6)
By = _A;21A21Bll F7)

and therefore
(Au _A12A;21A21)Bu =1. (F8)

The Green function is thus

1
w—¢
=w—t—TI(w) (F9)

91‘

Gl=w—t—0

where we defined the so-called hybridization function

0ua0yq

() =Z—w_8 (F10)

Note that nowhere but in the last expression have we sup-
posed that the matrix € is diagonal. That condition simply
serves to minimize computation time.
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