Exploring Quantum Chaos with Quantum Information Processors

David Poulin

Institute for Quantum Computing
Perimeter Institute for Theoretical Physics
Simulating quantum systems: the readout problem.

The QDC1 model of computation.

The elementary scattering circuit.

Looking for symmetries in complex quantum systems.
 - Random matrix conjecture.
 - Estimating the form factors.

Hypersensitivity to perturbations: fidelity decay.
 - DQC1 algorithm.
 - Experimental results.

Decoherence and dynamical instability.

Entanglement, decoherence and quantum-computational speed-up.

Conclusion.
Readout problem

In a physical experiment, a system evolves from its initial state and is finally measured in some basis.
Readout problem

In a physical experiment, a system evolves from its initial state and is finally measured in some basis.

We know that quantum computer can be use to simulate the evolution of some quantum systems (Zalka, Lloyd, ...).

\[U(t) \approx U_n \ldots U_2 U_1 \]

Universal set
Readout problem

In a physical experiment, a system evolves from its initial state and is finally measured in some basis.

We know that quantum computer can be use to simulate the evolution of some quantum systems (Zalka, Lloyd, ...).

\[U(t) \approx U_n \ldots U_2 U_1 \]

Universal set

Do we need to prepare a special initial state?

Low temperature transport properties \[\langle \psi_0 | e^{-i(H_0+V)} | \psi_k \rangle. \]
Readout problem

In a physical experiment, a system evolves from its initial state and is finally measured in some basis.

- We know that quantum computer can be use to simulate the evolution of some quantum systems (Zalka, Lloyd, ...).

\[
U(t) \approx U_n \ldots U_2 U_1
\]

Universal set

- Do we need to prepare a special initial state?

- Low temperature transport properties \(\langle \psi_0 \left| e^{-i(H_0+V)} \right| \psi_k \rangle \).

- Do we need to know the spectral projectors of the measured quantity?
Readout problem

In a physical experiment, a system evolves from its initial state and is finally measured in some basis.

We know that quantum computer can be used to simulate the evolution of some quantum systems (Zalka, Lloyd, ...).

\[U(t) \approx U_n \ldots U_2 U_1 \]

Universal set

Do we need to prepare a special initial state?

Low temperature transport properties \(\langle \psi_0 | e^{-i(H_0+V)} | \psi_k \rangle \).

Do we need to know the spectral projectors of the measured quantity?

The ability to efficiently simulate the dynamics \(U(t) \) alone can be used to extract interesting physical quantities.
Liquid state NMR QIP

The initial state is thermal \(\rho = \frac{1}{Z} e^{-\beta H} \).
Liquid state NMR QIP

The initial state is thermal \(\rho = \frac{1}{Z} e^{-\beta H} \).

\[H \simeq \sum_i \vec{\mu}_i \cdot \vec{B} + \sum_{i \neq j} J_{ij} \vec{\mu}_i \vec{\mu}_j, \quad \omega \gg J \quad \text{and} \quad \beta \ll 1, \quad \text{so} \]

\[\rho \simeq \frac{1}{Z} \left(1 - \beta \sum_i \omega_i \sigma_z \right) \]
The initial state is thermal $\rho = \frac{1}{Z} e^{-\beta H}$.

$H \simeq \sum_i \vec{\mu}_i \cdot \vec{B} + \sum_{i \neq j} J_{ij} \vec{\mu}_i \vec{\mu}_j$, $\omega \gg J$ and $\beta \ll 1$, so

$$\rho \simeq \frac{1}{Z} \left(1 - \beta \sum_i \omega_i \sigma_{zi} \right)$$

Apply an inhomogeneous magnetic field to induce a random phase:

$$\rho \rightarrow \frac{1}{Z} \left(1 + \frac{\beta \omega n}{2^n} |0\ldots00\rangle\langle 0\ldots00| \right)$$
Liquid state NMR QIP

- The initial state is thermal: \(\rho = \frac{1}{Z} e^{-\beta H} \).
- \(H \simeq \sum_i \vec{\mu}_i \cdot \vec{B} + \sum_{i \neq j} J_{ij} \vec{\mu}_i \vec{\mu}_j \), \(\omega \gg J \) and \(\beta \ll 1 \), so
 \[
 \rho \simeq \frac{1}{Z} \left(\mathbb{1} - \beta \sum_i \omega_i \sigma_{zi} \right)
 \]
- Apply an inhomogeneous magnetic field to induce a random phase:
 \[
 \rho \rightarrow \frac{1}{Z} \left(\mathbb{1} + \frac{\beta \omega_n}{2^n} |0\ldots00\rangle\langle0\ldots00| \right)
 \]

Pseudo pure state, the identity part does not contribute to the computation.

This exponential decay can be avoided using \textit{algorithmic cooling}, but the overhead is $\sim 10^{10}$.
This exponential decay can be avoided using *algorithmic cooling*, but the overhead is $\sim 10^{10}$.

Add restrictions to the “standard” model of quantum computation.
This exponential decay can be avoided using \textit{algorithmic cooling}, but the overhead is $\approx 10^{10}$.

Add restrictions to the “standard” model of quantum computation

1. Only a single pseudo-pure qubit.

$$\rho = \left(\frac{1 - \epsilon}{2} \mathbb{1} + \epsilon |0\rangle \langle 0| \right) \otimes \frac{1}{2^n} \mathbb{1}$$
This exponential decay can be avoided using *algorithmic cooling*, but the overhead is $\sim 10^{10}$.

Add restrictions to the “standard” model of quantum computation

1. Only a single pseudo-pure qubit.

$$\rho = \left(\frac{1 - \epsilon}{2} 11 + \epsilon |0\rangle \langle 0| \right) \otimes \frac{1}{2^n} 11$$

2. No projective measurement, rather $\langle \sigma_z \rangle$ within finite accuracy μ.

This exponential decay can be avoided using \textit{algorithmic cooling}, but the overhead is $\sim 10^{10}$.

Add restrictions to the “standard” model of quantum computation
1. Only a single pseudo-pure qubit.

\[
\rho = \left(\frac{1 - \epsilon}{2} \mathbb{1} + \epsilon |0\rangle\langle 0| \right) \otimes \frac{1}{2^n} \mathbb{1}
\]

2. No projective measurement, rather $\langle \sigma_z \rangle$ within finite accuracy μ.

Can we do something non trivial with this?

E. Knill and R. Laflamme, 1998
Remarks:

1. Not robust against noise.
 - Nowhere to dump the entropy!
Remarks:

1. Not robust against noise.
 - Nowhere to dump the entropy!

2. Measurement accuracy $\mu \rightarrow \delta$: cost $(\mu/\delta)^2$.

From a computational complexity point of view:

$|00...0\rangle \langle 00...0| \otimes 1^2^n$
Remarks:

1. Not robust against noise.
 ![Red dot] Nowhere to dump the entropy!

2. Measurement accuracy $\mu \rightarrow \delta$: cost $(\mu/\delta)^2$.

3. Pseudo-pure state \Leftrightarrow pure state $\rho = |0\rangle\langle 0| \otimes \frac{1}{2^n} 11$: cost $1/\epsilon^2$.

Caltech, November 2004 – p.6
Remarks:

1. Not robust against noise.
 - Nowhere to dump the entropy!

2. Measurement accuracy $\mu \rightarrow \delta$: cost $(\mu/\delta)^2$.

3. Pseudo-pure state \Leftrightarrow pure state $\rho = |0\rangle\langle 0| \otimes \frac{1}{2^n} \mathbb{1}$: cost $1/\epsilon^2$.

4. One pure qubit $\Leftrightarrow \log(n)$ pure qubits: cost $\text{poly}(n)$.
 - From a computational complexity point of view:

$$\underbrace{|00\ldots0\rangle\langle 00\ldots0|}_{\ln n} \otimes \frac{1}{2^n} \mathbb{1}$$
\[\gamma = Tr\{U \rho\} \]
If U can be implemented efficiently and ρ prepared efficiently, we can evaluate $\text{Tr}\{U \rho\}$ within accuracy δ in time $\text{poly}(n)/\delta^2$.

\[
\rho' = \frac{1}{2} \begin{pmatrix}
1 + \text{Re}\{\gamma\} & i\text{Im}\{\gamma\} \\
-i\text{Im}\{\gamma\} & 1 - \text{Re}\{\gamma\}
\end{pmatrix}
\]
Scattering circuit

\[
|0\rangle\langle 0| \xrightarrow{H} \langle \sigma_k \rangle \\
\rho \xrightarrow{U} \gamma = Tr\{U \rho\}
\]

\[
\rho_1' = \frac{1}{2} \begin{pmatrix}
1 + Re\{\gamma\} & iIm\{\gamma\} \\
-iIm\{\gamma\} & 1 - Re\{\gamma\}
\end{pmatrix}
\]

\[
k = z : \langle \sigma_z \rangle = Tr\{\rho_1' \sigma_z\} = Re\{\gamma\} = Re[Tr\{\rho U\}]
\]

\[
k = y : \langle \sigma_y \rangle = Tr\{\rho_1' \sigma_y\} = Im\{\gamma\} = Im[Tr\{\rho U\}]
\]
\[|0\rangle\langle 0| \quad H \quad H \quad \langle \sigma_k \rangle \quad \gamma = Tr\{U \rho\} \]

\[\rho' = \frac{1}{2} \begin{pmatrix} 1 + Re\{\gamma\} & iIm\{\gamma\} \\ -iIm\{\gamma\} & 1 - Re\{\gamma\} \end{pmatrix} \]

\[k = z : \langle \sigma_z \rangle = Tr\{\rho'_1 \sigma_z\} = Re\{\gamma\} = Re[Tr\{\rho U\}] \]
\[k = y : \langle \sigma_y \rangle = Tr\{\rho'_1 \sigma_y\} = Im\{\gamma\} = Im[Tr\{\rho U\}]\]

If \(U \) can be implemented efficiently and \(\rho \) prepared efficiently, we can evaluate \(Tr\{\rho U\} \) within accuracy \(\delta \) in time \(poly(n)/\delta^2 \).
We can evaluate $Tr\{\rho U\}$.
We can evaluate $Tr\{\rho U\}$

Control U and learn about ρ: quantum state tomography.
We can evaluate $Tr\{\rho U\}$

- Control U and learn about ρ: quantum state tomography.
- Control ρ and learn about U: quantum process tomography.

Scattering circuit

We can evaluate $Tr\{\rho U\}$

- Control U and learn about ρ: quantum state tomography.
- Control ρ and learn about U: quantum process tomography.

These algorithms require an exponential repetition of the scattering circuit.
We can evaluate $Tr\{\rho U\}$

- Control U and learn about ρ: quantum state tomography.
- Control ρ and learn about U: quantum process tomography.

- These algorithms require an exponential repetition of the scattering circuit.
- Can we get useful partial information about U?
We can evaluate $\text{Tr}\{\rho U\}$

- Control U and learn about ρ: quantum state tomography.
- Control ρ and learn about U: quantum process tomography.

These algorithms require an exponential repetition of the scattering circuit.

- Can we get useful partial information about U?
- DQC1 imposes restrictions on ρ. We will focus on $\rho \propto 1$.

$$\gamma = \frac{1}{N} \text{Tr}\{U\} = \frac{1}{N} \sum_j \lambda_j$$
Doing the obvious thing

\[\frac{1}{N} Tr\{U\} = \frac{1}{N} \sum_j e^{i\phi_j} \]

\[= \frac{1}{N} \sum_j \vec{v}_j \]

Is there an intuitive way of understanding these two different behaviors? Can we learn something useful about the dynamics of the system with this simple algorithm?

Doing the obvious thing

\[
\frac{1}{N} Tr\{U\} = \frac{1}{N} \sum_j e^{i\phi_j}
\]

\[
= \frac{1}{N} \sum_j \vec{v}_j
\]
Doing the obvious thing

\[\frac{1}{N} \text{Tr}\{U\} = \frac{1}{N} \sum_j e^{i\phi_j} \]

\[= \frac{1}{N} \sum_j \vec{v}_j \]
Doing the obvious thing

\[\frac{1}{N} Tr \{ U \} = \frac{1}{N} \sum_{j} e^{i \phi_j} \]

\[= \frac{1}{N} \sum_{j} \vec{v}_j \]
Doing the obvious thing

$$\frac{1}{N} Tr\{U\} = \frac{1}{N} \sum_j e^{i\phi_j}$$

$$= \frac{1}{N} \sum_j \vec{v}_j$$
Doing the obvious thing

\[
\frac{1}{N} Tr\{U\} = \frac{1}{N} \sum_j e^{i\phi_j} \\
= \frac{1}{N} \sum_j \vec{v}_j
\]

Doing the obvious thing

\[\frac{1}{N} Tr\{U\} = \frac{1}{N} \sum_j e^{i\phi_j} = \frac{1}{N} \sum_j \vec{v}_j \]

Is there an intuitive way of understanding these two different behaviors?

Doing the obvious thing

\[\frac{1}{N} Tr\{U\} = \frac{1}{N} \sum_j e^{i\phi_j} \]

\[= \frac{1}{N} \sum_j \vec{v}_j \]

Is there an intuitive way of understanding these two different behaviors?

Can we learn something useful about the dynamics of the system with this simple algorithm?

Quantum control

Quantum information processing is the art of manipulating complex quantum systems.
Quantum control

Quantum information processing is the art of manipulating complex quantum systems.

Control a quantum system = exploit its symmetries (QECC, NSS, bang-bang)
Quantum control

Quantum information processing is the art of manipulating complex quantum systems.

Control a quantum system = exploit its symmetries (QECC, NSS, bang-bang)

Does my system possess any symmetries?
Quantum control

- Quantum information processing is the art of manipulating complex quantum systems.
- Control a quantum system = exploit its symmetries (QECC, NSS, bang-bang)
- *Does my system possess any symmetries?*

Systems with as many symmetries as degrees of freedom are integrable.

- These are good candidates for quantum information processors.
Quantum control

Quantum information processing is the art of manipulating complex quantum systems.

Control a quantum system = exploit its symmetries (QECC, NSS, bang-bang)

Does my system possess any symmetries?

Systems with as many symmetries as degrees of freedom are integrable.

These are good candidates for quantum information processors.

Chaotic systems possess no or very few symmetries.

They are hard to control.

They are dynamically unstable (sensitive to perturbations).
Looking for symmetries

Resonances of Thorium 232
Looking for symmetries

List of resonances

<table>
<thead>
<tr>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
</tr>
<tr>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>3.0</td>
<td>3.2</td>
<td>3.4</td>
<td>3.6</td>
</tr>
<tr>
<td>4.0</td>
<td>4.2</td>
<td>4.4</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Table 1: Resonance levels (parameters of 1^p)

<table>
<thead>
<tr>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
<th>E_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>3.0</td>
<td>3.2</td>
<td>3.4</td>
<td>3.6</td>
</tr>
<tr>
<td>4.0</td>
<td>4.2</td>
<td>4.4</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Level spacing

Fig. 10. Histogram of the observed distribution of nearest-neighbor level spacings $s = D/D_0$ for Th. The three theoretical curves correspond respectively to random, orthogonal ($\beta = 1$) and unitary ($\beta = 2$). The orthogonal ($\beta = 1$) curve is the favored theoretical distribution.
Looking for symmetries

Wigner’s intuition: The main characteristics of the spectrum of can be reproduced by random matrices which possess the same symmetries as the system.
Looking for symmetries

Wigner’s intuition: The main characteristics of the spectrum of can be reproduced by random matrices which possess the same symmetries as the system.

\[f(U) \simeq \int f(V) P(V) dV. \]

- \(P(V) \neq 0 \) only for those \(V \) with the same symmetries as \(U \).
- \(P(V) \) is determined with the maximum entropy principle given the above constraint.
Looking for symmetries

Wigner’s intuition: The main characteristics of the spectrum of can be reproduced by random matrices which possess the same symmetries as the system.

\[f(U) \approx \int f(V) P(V) dV. \]

- \(P(V) \neq 0 \) only for those \(V \) with the same symmetries as \(U \).
- \(P(V) \) is determined with the maximum entropy principle given the above constraint.

No symmetry = Level repulsion
Looking for symmetries

Wigner’s intuition: The main characteristics of the spectrum of can be reproduced by random matrices which possess the same symmetries as the system.

\[f(U) \simeq \int f(V)P(V)dV. \]

- \(P(V) \neq 0 \) only for those \(V \) with the same symmetries as \(U \).
- \(P(V) \) is determined with the maximum entropy principle given the above constraint.

No symmetry = Level repulsion
Looking for symmetries

Symmetries = Block diagonal

\[U = \exp \left\{ -\frac{iHt}{\hbar} \right\} = \begin{pmatrix} U_1 & & & \\ & U_2 & & \\ & & \ddots & \\ & & & U_d \end{pmatrix} \]

Mixture of i.i.d variables → Poisson distribution
Looking for symmetries

Symmetries = Block diagonal

\[U = \exp \left\{ -\frac{iHt}{\hbar} \right\} = \begin{pmatrix} U_1 & & & \\ & U_2 & & \\ & & \ddots & \\ & & & U_d \end{pmatrix} \]

Mixture of i.i.d variables \(\rightarrow\) Poisson distribution.
Looking for symmetries

$$\frac{1}{N} Tr\{U\} = \frac{1}{N} \sum_j e^{i\phi_j}$$

$$= \frac{1}{N} \sum_j \vec{v}_j$$
Looking for symmetries

\[
\frac{1}{N} Tr \{ U \} = \frac{1}{N} \sum_j e^{i\phi_j} = \frac{1}{N} \sum_j \vec{v}_j
\]

With symmetries (regular): \(\frac{1}{N} Tr \{ U \} = \frac{1}{N} \sqrt{N} = \frac{1}{\sqrt{N}} \)
Looking for symmetries

\[
\frac{1}{N} Tr\{U\} = \frac{1}{N} \sum_j e^{i\phi_j} = \frac{1}{N} \sum_j \vec{v}_j
\]

- **With symmetries (regular):** \(\frac{1}{N} Tr\{U\} = \frac{1}{N} \sqrt{N} = \frac{1}{\sqrt{N}} \)
- **No symmetries (chaotic):** \(\frac{1}{N} Tr\{U\} = \frac{1}{N} O(1) = \frac{1}{N} \)
Looking for symmetries

\[
\frac{1}{N} Tr\{U\} = \frac{1}{N} \sum_j e^{i\phi_j} = \frac{1}{N} \sum_j \vec{v}_j
\]

- With symmetries (regular): \(\frac{1}{N} Tr\{U\} = \frac{1}{N} \sqrt{N} = \frac{1}{\sqrt{N}} \)
- No symmetries (chaotic): \(\frac{1}{N} Tr\{U\} = \frac{1}{N} O(1) = \frac{1}{N} \)

Requires accuracy \(\frac{1}{\sqrt{N}} \) so overhead is \(N \): square-root improvement over brute force classical computation.

Fidelity decay

Quantum map U, e.g. $U = \exp\{-iHt\}$. How sensitive is U to perturbation?
Fidelity decay

Quantum map U, e.g. $U = \exp\{-iHt\}$. How sensitive is U to perturbation?

Perturbed quantum map U_p, e.g.

$$U_p = U \exp\{-i\delta V\}$$
Fidelity decay

Quantum map \(U \), e.g. \(U = \exp\{-iHt\} \). How sensitive is \(U \) to perturbation?

Perturbed quantum map \(U_p \), e.g.

\[
U_p = U \exp\{-i\delta V\}^K
\]

Fidelity after \(n \) steps (Lodschmidt echo):

\[
F_n(\psi) = \left| \left\langle \psi \right| \left(U^n \right)^\dagger U^n_p |\psi\rangle \right|^2
\]
Fidelity decay

Quantum map U, e.g. $U = \exp\{-iHt\}$. How sensitive is U to perturbation?

Perturbed quantum map U_p, e.g.

$$U_p = U \exp\{-i\delta V\}$$

Fidelity after n steps (Lodschmidt echo):

$$F_n(\psi) = |\langle \psi | (U^n)^\dagger U_p^n | \psi \rangle|^2$$

State independent signature (average over ψ):

$$\overline{F_n} = \int F_n(\psi) d\psi = \frac{|Tr\{(U^n)^\dagger U_p^n\}|^2}{N^2 + N} + N$$
Fidelity decay

Peres’ conjecture: $F_n(\psi)$ is a signature of quantum chaos (dynamical instability).

- Chaotic systems have an exponential decay $\exp(-\Gamma n)$.
- Regular systems have a polynomial decay $1/poly(n)$.
Peres’ conjecture: $F_n(\psi)$ is a signature of quantum chaos (dynamical instability).

- Chaotic systems have an exponential decay $\exp(-\Gamma n)$.
- Regular systems have a polynomial decay $1/poly(n)$.

Fidelity decay measures the relative randomness of U and K.

- Universal response to perturbation.
- “Simple” perturbation produce good signature of quantum chaos.
Fidelity decay

- Peres’ conjecture: $F_n(\psi)$ is a signature of quantum chaos (dynamical instability).
 - Chaotic systems have an exponential decay $\exp(-\Gamma n)$.
 - Regular systems have a polynomial decay $1/poly(n)$.
- Fidelity decay measures the relative randomness of U and K.
 - Universal response to perturbation.
 - “Simple” perturbation produce good signature of quantum chaos.

J. Emerson, Y.S. Weinstein, S. Lloyd, and D.G. Cory, 2002
Trace circuit

\[|0\rangle \langle 0 | \quad H \quad U \quad H \quad \langle \sigma_k \rangle \]

\[
\frac{1}{2^n} \quad U
\]

\[
k = y : \langle \sigma_y \rangle = \frac{1}{N} \text{Im} [\text{Tr}\{U\}] \\
k = z : \langle \sigma_z \rangle = \frac{1}{N} \text{Re} [\text{Tr}\{U\}] \\
F_n = \frac{|\text{Tr}\{(U^n)^\dagger U_p^n\}|^2 + N}{N^2 + N}, \quad U_p = UK
\]
Trace circuit

\[|0\rangle\langle 0| \quad \overset{\text{H}}{\longrightarrow} \quad \frac{1}{2^n} \overset{U}{\longrightarrow} \quad \langle \sigma_k \rangle \]

\[k = y : \langle \sigma_y \rangle = \frac{1}{N} \text{Im} \left[\text{Tr} \{ U \} \right] \]
\[k = z : \langle \sigma_z \rangle = \frac{1}{N} \text{Re} \left[\text{Tr} \{ U \} \right] \]

\[F_n = \frac{\left| \text{Tr} \{ (U^n)^\dagger U_p^n \} \right|^2 + N}{N^2 + N}, \quad U_p = UK \]

All we have to do it replace \(U \) in the above circuit by \((U^n)^\dagger (UK)^n \).
Since the U's and U^\dagger's annihilate each other when the K's are absent.

Measure F_n within accuracy ϵ with error probability p in time $nO((\log(1/p))^2)$.
Since the U's and U^\dagger's annihilate each others when the K's are absent.
Quantum circuit

Since the U’s and U^\dagger’s annihilate each others when the K’s are absent.

Since the U^\dagger are made after the final measurement.
Since the U's and U^\dagger's annihilate each others when the K's are absent.

Since the U^\dagger are made after the final measurement.

Measure $\overline{F_n}$ within accuracy ϵ with error probability p in time

$$nO\left(\frac{\log(1/p)}{\epsilon^2}\right)T$$
Experimental implementation

Colm Ryan, et al. (IQC)

[Graphs and images of chemical structures]
We use the circuit to model a system interacting with an environment, the system is initially in a pure state $\alpha|0\rangle + \beta|1\rangle$:

$$\rho_0 \xrightarrow{\frac{1}{N}} \begin{array}{c}
\rho_n \\
\begin{array}{cccc}
U & K & U & K \\
\vdots & \ddots & \ddots & \ddots \\
U & K
\end{array}
\end{array}$$

The decoherence rate is governed by the average fidelity decay rate of the environment! The decoherence rate depends on the strength of the coupling to the environment but also on the dynamics of the environment.
Decoherence

We use the circuit to model a system interacting with an environment, the system is initially in a pure state $\alpha|0\rangle + \beta|1\rangle$:

$$\rho_0 = \begin{pmatrix} |\alpha|^2 & \alpha\beta^* \\ \alpha^*\beta & |\beta|^2 \end{pmatrix} \Rightarrow \rho_n = \begin{pmatrix} |\alpha|^2 & \alpha\beta^*\gamma(n) \\ \alpha^*\beta\gamma(n)^* & |\beta|^2 \end{pmatrix}$$
We use the circuit to model a system interacting with an environment, the system is initially in a pure state $\alpha |0\rangle + \beta |1\rangle$:

$$\rho_0 = \begin{pmatrix} |\alpha|^2 & \alpha \beta^* \\ \alpha^* \beta & |\beta|^2 \end{pmatrix} \Rightarrow \rho_n = \begin{pmatrix} |\alpha|^2 & \alpha \beta^* \gamma(n) \\ \alpha^* \beta \gamma(n)^* & |\beta|^2 \end{pmatrix}$$

$$|\gamma(n)| = \left\{ \frac{F_n}{N} \right\}^{1/2} : \text{The decoherence rate is governed by the average fidelity decay rate of the environment!}$$
We use the circuit to model a system interacting with an environment, the system is initially in a pure state $\alpha|0\rangle + \beta|1\rangle$:

$$
\rho_0 = \begin{pmatrix}
|\alpha|^2 & \alpha\beta^* \\
\alpha^*\beta & |\beta|^2
\end{pmatrix}
\Rightarrow
\rho_n = \begin{pmatrix}
|\alpha|^2 & \alpha\beta^*\gamma(n) \\
\alpha^*\beta\gamma(n)^* & |\beta|^2
\end{pmatrix}
$$

$|\gamma(n)| = \left\{ \frac{F_n}{N} \right\}^{1/2}$: The decoherence rate is governed by the average fidelity decay rate of the environment!

The decoherence rate depends on the strength of the coupling to the environment but also on the dynamics of the environment.
Using the "phase kick-back", we see that the final state is
\[\rho_k = \frac{1}{N} \sum_j |\alpha_j\rangle \langle \alpha_j| \otimes |\phi_j\rangle \langle \phi_j| \]
where
\[|\alpha_j\rangle = \alpha |0\rangle + \beta e^{i\theta_j} |1\rangle \]
and the \[e^{i\theta_j} \] are the eigenvalues of
\[S = U_k P_k \cdots U_2 P_2 U_1 P_1 U_1^* \cdots U_k^* . \]
This circuit does not produce any entanglement between the probe qubit and the rest, throughout the computation.
Using the "phase kick-back", we see that the final state is

\[\rho_k = \frac{1}{N} \sum_j |\alpha_j\rangle\langle\alpha_j| \otimes |\phi_j\rangle\langle\phi_j| \]

where \(|\alpha_j\rangle = \alpha|0\rangle + \beta e^{i\theta_j} |1\rangle \) and the \(e^{i\theta_j} \) are the eigenvalues of \(S = U_k P_k \ldots U_2 P_2 U_1 P_1 U_1^\dagger U_2^\dagger \ldots U_k^\dagger \).
Using the "phase kick-back", we see that the final state is

\[\rho_k = \frac{1}{N} \sum_j |\alpha_j\rangle\langle\alpha_j| \otimes |\phi_j\rangle\langle\phi_j| \]

where \(|\alpha_j\rangle = \alpha |0\rangle + \beta e^{is_j} |1\rangle \) and the \(e^{is_j} \) are the eigenvalues of \(S = U_k P_k \ldots U_2 P_2 U_1 P_1 U_1^\dagger U_2^\dagger \ldots U_k^\dagger \).

This circuit does not produce any entanglement between the probe qubit and the rest, throughout the computation.
Decoherence does not require entanglement between the system and its environment: classical correlations are enough.
Decoherence does not require entanglement between the system and its environment: classical correlations are enough.

Is entanglement necessary for quantum computational speed-up? (If speed-up there is.)

- Pure states: YES.
- Mixed states: ?

This is an argument in favor of no... but not a proof.
Decoherence does not require entanglement between the system and its environment: classical correlations are enough.

Is entanglement necessary for quantum computational speed-up? (If speed-up there is.)
- Pure states: YES.
- Mixed states: ?
- This is an argument in favor of no... but not a proof.

Is there entanglement between other parts of the information processor? (Depends on the system of interest, i.e. U.)
Decoherence does not require entanglement between the system and its environment: classical correlations are enough.

Is entanglement necessary for quantum computational speed-up? (If speed-up there is.)
- Pure states: YES.
- Mixed states: ?
 This is an argument in favor of no... but not a proof.

Is there entanglement between other parts of the information processor? (Depends on the system of interest, i.e. U.)

If no, is there a classical dynamics which can provide the sequence of "classical" states?
Conclusion

- DQC1 is interesting.
 - Measure the form factors to learn about symmetries.
 - Measure fidelity decay to learn about dynamical stability.
- Experimental benchmarking of quantum information processing.
- Decoherence rate is influenced by the dynamical properties of the environment.
 - Decoherence does not require entanglement.
- Entanglement is not the key ingredient to quantum computational speed-up.
- We can learn about fundamental physics by working on quantum computation, and vice versa.
References

